• Title/Summary/Keyword: Servo control

Search Result 1,728, Processing Time 0.025 seconds

Fuzzy Based Control Gain Auto-Tuning of Servo Driver (퍼지를 이용한 서보드라이버의 제어 개인 자동 조정)

  • Kong, Young-Bae;Seo, Ho-Joon;Park, Gwi-Tae;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.541-543
    • /
    • 1998
  • Generally, PI control is simple and easy to implement and gains of PI control are determined by specifying a dynamics of the servo driver system. However, the gain-tuning is so difficult that it is relied on an expert's effort. This paper presents a gain auto-tuning method for PI controllers based on a fuzzy inference mechanism. First, the proposed fuzzy inference system identifies a system moment of inertia and adjusts control gains by using the difference in speed responses between a real plant and a reference model. Second, this paper proposes an improved fuzzy PI controller. To reduce the speed overshoot, we adapt a control method that selects a proper PI gains with respect to the load inertia variation. To prove the validity of the proposed gain tuning algorithm and the feasibility of the servo drive, a high performance servo drive will be implemented by DSP(TMS320C31) and intelligent power module (IPM). The proposed controller is applied to the speed control of the 300W AC servo motor. Some simulations and experimental results show that the proposed fuzzy PI controller is more robust than the conventional PI controller against the load inertia variation.

  • PDF

Control For Minimizing Settling Time in High-Density Disk Drives (고밀도 디스크 드라이브의 안착시간 최소화 제어)

  • 강창익;김창환;임충혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.10-21
    • /
    • 2003
  • During seek operation in disk drives, the recording head is moved toward desired track by seek servo controller and then is settled onto the center of the desired track by settling servo controller. If the head speed at the start of settling servo control is not slow, it may produce overshoot relative to the center of track and thus extend the settling time. The degradation in settling performance will be more severe as the track width becomes smaller for higher density of data storage. We design a new settling servo controller for minimizing settling time based on the pole-zero cancellation. In order to cancel slow poles in settling response, we apply discrete pulse signals to the system in addition to the state feedback control. For exact pole-zero cancellation, we consider the dynamics of power amplifier used for actuator current regulation and the effects of delay in control action. In addition, we present system parameter identification algerian for the robustness of our controller to system parameter variation. In order to demonstrate the practical use of our controller, we present experimental results obtained by using a commercially available disk drive.

Integral Error State Feedback VSC for a DC Servo Position Control System (직류서보 위치제어 시스템을 위한 편차적분 상태궤환 가변구조제어기)

  • 박영진;이기상;홍순찬
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.3
    • /
    • pp.88-95
    • /
    • 1994
  • A scheme of IESFVSC(Integral Error State Feedback Variable Structure Controller) is proposed for a DC servo position control system with the disturbances which do not satisfy the matching condition. The proposed control system is composed of servo compensator and state feedback VSC. The servo compensator enhances the robustness of the control system against various types of disturbance, and makes effective tracking possible without using error dynamics. The IESFVSC is applied to the practical design of a robust DC servo control system and the control performances are verified through theoretical analyses and simulations.

  • PDF

An Adoptive Current Control Scheme of an AC Servo Motor for Performance Improvement of a Servo Drive (서보 드라이브 성능 향상을 위한 AC 서보 전동기의 적응형 전류 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.96-103
    • /
    • 2006
  • An MRAC-based adaptive current control scheme of an AC servo motor is presented for the performance improvement of a servo drive. Although the predictive current control is known to give ideal transient and steady-state responses, its steady-state response my be degraded under motor parameter variations. To overcome such a limitation, the disturbances caused by the parameter variations will be estimated by using an MRAC technique and compensated by a feedforward control. The proposed scheme does not require the measurement of the phase voltage unlike the conventional disturbance estimation scheme using observer. The asymptotic stability is proved. The proposed scheme is implemented using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

Implementation of Motor Driver for Control of AC Servo Motor of Robot (로봇의 다축 모션 제어용 AC 서보 모터 드라이버 구현)

  • Kim, Yong-Jin;Bae, Young-Chul;Kim, Kwang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.553-558
    • /
    • 2012
  • An effort for motion control of multi-axis in robot have been continued recently. In this paper, we propose implementation method for AC servo driver that can be easily motion control of multi-axis in robot. This proposed method implement EtherCAT communication technologies of bi-directional optical communication based on single optical core method that applied WDM for communication between control stage which is upper and AC servo drive stage.

A study on the control of DC servo motors and the position for robot (로보트를 위한 DC servo motor 구동과 위치 제어에 관한 연구)

  • 김성준;김형래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.41-44
    • /
    • 1986
  • Recently, the robot has been used in industries and laboratories for the automation and the coarse and hazardous environments. In this paepr, it was studied the robot using DC servo motors. In that maner, Gold Star educational robot "Top-1" which was drived by 6-step motors was rebuilt to the robot. "Kon Kuk-I" using 6-servo motors. Because the caracteristics of step motors were not fit well the differential change. For the precise robot control, it was designed the controller which was adopted the velocity mode control and the position mode control. It was studied also the supporting software for the robot motion. As the results of this experiments, it was found that the robot "Kon Kuk-I" moved smoothly and accurately.

  • PDF

Control of a Electro-hydraulic Servo System Using Recurrent Neural Network based 2-Dimensional Iterative Learning Algorithm in Discrete System (이산시간 2차원 학습 신경망 알고리즘을 이용한 전기$\cdot$유압 서보시스팀의 제어)

  • 곽동훈;조규승;정봉호;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.62-70
    • /
    • 2003
  • This paper deals with a approximation and tracking control of hydraulic servo system using a real time recurrent neural networks (RTRN) with 2-dimensional iterative learning rule. And it was driven that 2-dimensional iterative learning rule in discrete time. In order to control the trajectory of position, two RTRN with same network architecture were used. Simulation results show that two RTRN using 2-D learning algorithm is able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RTRN was very effective to control trajectory tracking of electro-hydraulic servo system.

Speed Sensorless Vector Control for AC servo Motor Using Flux observer

  • Hong, Jeng-pyo;Kwon, Soon-Jae;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.185-191
    • /
    • 2004
  • This study describes the scheme of vector drive system without speed sensor for AC servo motor using theory of a flux observer and based on the field oriented vector control. The new method of speed estimation is presented from operate with the position and magnitude of the secondary flux which obtain from the voltage reference and detected current. As the estimated speed is settled by the flux and the machine-specific parameters. this method don't need to adjust the gain of the parameter. Based on the derived theory for vector control. the scheme for sensorless vector drive of AC servo motor is designed and realized. And the experiment verifies it passable to realize the sensorless vector drive based on a field-oriented type.

Periodic Adaptive Compensation of State-dependent Disturbance in a Digital Servo Motor System

  • Ahn, Hyo-Sung;Chen, YangQuan;Yu, Won-Pil
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • This paper presents an adaptive controller for the compensation of state-dependent disturbance with unknown amplitude in a digital servo motor system. The state-dependent disturbance is caused by friction and eccentricity between the wheel axis and the motor driver of a mobile robot servo system. The proposed control scheme guarantees an asymptotical stability for both the velocity and position regulation. An experimental result shows the effectiveness of the adaptive disturbance compensator for wheeled-mobile robot in a low velocity diffusion tracking. A comparative experimental study with a simple PI controller is presented.

Design of Adaptive Fuzzy Logic Controller for Speed Control of AC Servo Motor

  • Nam Jing-Rak;Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Chung Chin-Young
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • In this paper, the adaptive fuzzy logic controller(AFLC) is proposed, which uses real-coding genetic algorithm showing a good performance on convergence velocity and diversity of population among evolutionary computations. The effectiveness of the proposed AFLC was demonstrated by computer simulation for speed control system of AC servo motor. As a result of simulation for the AC servo motor, it is shown the proposed AFLC has the better performance on overshoot, settling time and rising time than the PI controller which is used when tuning AFLC.