• Title/Summary/Keyword: Servo Parameter

Search Result 226, Processing Time 0.029 seconds

A design on robust multivariable model following servo system (강인한 다변수 모델 추종형 서보시스템의 구성에 관한 연구)

  • Hwang, C.S.;Choi, Y.K.;Lee, Y.W.;Choi, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.370-373
    • /
    • 1991
  • This paper considers the linear multivariable model following servo system synthesis method in which linear optimal regulator problem is used to design controllers that make the response of the plant should be kept close to a specified ideal response of the model. The characteristics of this system is that the constructed system is robust in the presence of the constant disturbances or the parameter perturbations of the plant. Especially, the steady state offset is excluded for the ramp response of the model by direct feedforward compensator from the reference input.

  • PDF

A Controller Design of a Magnetic Levitation System (자기부상 시스템의 제어기 설계)

  • Ha, Y.W.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.62-71
    • /
    • 2000
  • A mathematical modeling for a magnetic levitation system is proposed using the Taylor series expansion of differential function for obtaining linearity. It is confirmed that this kind of linear approximation method can be used to the modeling of a magnetic levitation system. The two-degree-of-freedom optimal servo system for a constant reference signal is proposed using the LQ optimization technique. An additional state feedback is introduced at the output of the integrator to cancel the integral action for reference signal if there is no modeling error of the plant and no disturbance input to the plant. When the modeling error or the disturbance input exists, the integral effect appears. The system has a free parameter which can b used to tune the effect of the integral compensation.

  • PDF

Robust Adaptive Sliding Mode Controller for PMSM Servo Drives System (강인 적응성 슬라이딩을 이용한 PMSM 서보드라이브 시스템 제어기)

  • Park, Ki-Kwang;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1640_1641
    • /
    • 2009
  • Dynamic friction and force ripple are the most predominant factors that affect the positioning accuracy of permanent magnet synchronous motor(PMSM) servo drives system, and it is desirable to compensate them in finite time with a continuous control law. In this paper, based on LuGre dynamic friction model, a robust adaptive skidding mode controller is proposed to compensate the nonlinear effect of friction and force ripple. The controller scheme consists of a PD component and a robust adaptive sliding mode controller for estimating the unknown system parameter. Using Lyapunov stability theorem, asymptotic stability analysis and position tracking performance are guaranteed. Simulation results well verify the feasibility and the effectiveness of the proposed scheme for high0precision motion trajectory tracking.

  • PDF

A Study on the Implementation of a DC Servo Motor Speed Controller Using Self-tuning PID Algorithm, with Multi-processor (자기동조 PID 알고리즘을 이용한 다중processor 방식의 DC 서보모타 속도제어기의 구현)

  • Chung, Kee-Chull;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.125-128
    • /
    • 1989
  • This paper presents a DC servo motor controller using self-tuning PID algorithm, which can support Multi-processor for the real time processing. Computer simulation as well as experiment using Multi-processor(8088) are implemented with self-tuning PID algorithm. Presented algorithm is used to compare the performance of the controller with that of the classical PID controller through computer simulation and experiment. The result which use the Self-Tuning algorithm show that motor output follows the reference input trajectory fairly well inspite of load disturbances and parameter variations.

  • PDF

A Study On The Main Parameter Derivation For Influences On Foot Effort Characteristics In Commercial Vehicles (상용차량 클러치 페달 답력 특성에 영향을 미치는 주요 인자 도출에 관한 연구)

  • Hong, Dong-Pyo;Hong, Yong;Park, Hyen-Woo;Yu, Seok-Jun;Lee, Hak-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.970-973
    • /
    • 2008
  • For commercial vehicles with a manual transmission, the pneumatic and fluid pressure servo-device is widely used for transmitting large torque. However, the pneumatic and fluid pressure servo-device usually results in non-linear variation of foot-efforts, also such characteristics tend to increase physical fatigue of drivers who drive commercial vehicles for a long time. Thus, vehicle manufacturers consider the hysteresis loops in the Clutch Actuation System (CAS) design when a new vehicle model is being developed. In this study, we numerically simulate the hysteresis loops for predictable CAS design, and the experimental results confirm the simulation results.

  • PDF

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.

Robust Servo Control of High Speed Optical Pickups (고속 광 픽업 장치의 강인 서보 제어)

  • 임승철;정태영
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.533-541
    • /
    • 1998
  • Recently, optical disk drives are increasingly demanded to have higher speed as well as high information density, especially for applications like CD ROM drives. To this end, improvement of their optical pickup structure and control is recognized the very challenging issue. In this paper, the pickup is first analytically modelled in a plane to describe its coupled auto-focusing and auto-tracking motions. Subsequently, the model is linearized and combined with actuator dynamics for the auto-focusing system. With its unmeasurable parameters being estimated based on experimental data, an approximate I-DOF linear model is obtained neglecting the coupling term. To design the high speed and robust positional servo controller realistic design specifications are addressed, and H control method is employed based on the approximate model. Finally, taking the pickup in a commerical high speed CD ROM drive as an example performance of the designed controller is verified through realtime experiments.

  • PDF

Construction Two Degree of freedom PID controller with Neural network for drives of DC servo motor (DC 서보모터 구동을 위한 신경망 2자유도 PID제어기 구성)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.395-398
    • /
    • 2001
  • In this paper, we consider to apply of 2-DOF (Degree of Freedom) PID controller at D.C servo motor system. Many control system use I-PD, PID control system but the position control system have difficulty in controling variable load and changing parameter. We propose neural network 2-DOF PID control system haying feature for removal disturbances and tracking function in the target value point. Experiment result for 2-DOF PID controller with neural network are illustrated.

  • PDF

A Study on Dynamic Characteristics Analysis and Servo Control of Linear Motor (리니어 모터의 동적특성 분석 및 서보제어에 관한 연구)

  • Sim, Hyun-Suk;Hwang, Won-Jun;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • For high-accuracy position control of a linear motor, it has been proposed a nonlinear controller including a synchronization algorithm. Linear motors are easily affected by force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbances. Synchronization error is also caused by skew motion, model uncertainties, and force disturbance on each axis. Nonlinear effects such as friction and ripple force are estimated and compensated for. The synchronization algorithm is used to reduce the synchronous error of the two side pillars. The performance of the controller is evaluated by computer simulations.

DESIGN OF ADAPTIVE CONTROLLER OF DC SERVO MOTOR (직류전동기의 적응 제어기 설계에 관한 연구)

  • Chang, S.G.;Won, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.25-28
    • /
    • 1987
  • Design procedure of adaptive controller with variable load condition is present and applied to velocity control of small, permanent magnet DC servo motor. The state feedback control scheme is adopted and Recursive Least Squares algorithm is used for parameter estimation. In order to reduce the time consuming. In the procedure of adaptation-gain tuning of state feedback controller, approximate curve fitting technique is applied to the relations between load condition and poles of the system, load condition and feedback gains. With this method, fast adaptation can be accomplished. It is shown that this procedure can be applied not only to variable load condition but also to variation of other system constants, for example variation of resistance and inductance etc.. Simulation results is present for both cases - variable inertia load, variable motor resistance to verify performance improvements. This design procedure produces an adaptive con troller which is feasible for implementation with microprocessor by reducing calculation time.

  • PDF