• 제목/요약/키워드: Servo

검색결과 2,287건 처리시간 0.027초

공기압 Servo Valve 설계 및 해석

  • 김동수;김광영;이원희;박상운;김현섭;유재섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2003년도 추계학술대회 논문요약집
    • /
    • pp.152-152
    • /
    • 2003
  • PDF

Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation (유압밸브 구동용 서보 액추에이터의 신뢰성 향상을 위한 설계 파라미터 도출)

  • Sung, Baek Ju;Kim, Do Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제38권5호
    • /
    • pp.475-482
    • /
    • 2014
  • The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

Center Compensation Servo and Eccentric Compensation Control for High Speed CD-RW Drive System (고배속 CD-RW Drive를 위한 중점 서보 및 편심 보상 제어)

  • Kim Dongwon;Park Gwi-Tae;Seo Sam-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제10권12호
    • /
    • pp.1202-1209
    • /
    • 2004
  • This paper presents a design methodology of a Digital Servo Signal Processor for high speed CD-RW drive systems. The proposed Digital Servo Signal Processor enables us to develop CD-related systems for the very high speed applications and is one of the key components of the CD-RW systems. The proposed center compensation servo control is newly built for an actuator shaking due to the fast response of a step motor when it jumps to a long distance. A control method compensating for eccentricity of a disc is implemented for operating robustly at a higher rotational speed. This servo mechanism is more size efficient and less power consumed because it is implemented using a ARM7 embedded processor and hardware digital filters. Furthermore, it is convenient to upgrade firmware for the future required functions. From experimental results, we can see that the performance of the control system is improved greatly. The proposed servo algorithm shows a shorter setting time including a pull-in time and a faster access time. It can be applied easily to the DVD-ROM and the DVD-RAM which have the same optical structure.

A Dual-Stage Servo System for an NFR Disk Drive using Iterative Learning Control (반복 학습 제어를 이용한 NFR 디스크 드라이브의 2단 서보 시스템)

  • 문정호;도태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제9권4호
    • /
    • pp.277-283
    • /
    • 2003
  • Recently, near-field recording (NFR) disk drive schemes have been proposed with a view to increasing recording densities of hard disk drives. Compared with hard disk drives. NFR disk drives have narrower track pitches and are exposed to more severe periodic disturbances resulting from eccentric rotation of the disk. It is difficult to meet servo system design specifications for NFR disk drives with conventional VCM actuators in that the servo system for an NFR disk drive generally requires a feater gain and higher bandwidth. To tackle the problem various dual-stage actuator systems composed of a microactuator mounted on top of a conventional VCM actuator have been proposed. This article deals with the problem of designing a tracking servo system far an NFR disk drive adopting a dual-stage actuator. We summarize design constraints pertaining to the dual-stage servo system and present a new servo scheme using iterative teaming control. We design feedback compensators and an iterative teaming controller for a target plant and verify the validity of the proposed control scheme through a computer simulation.

Target Tracking of the Wheeled Mobile Robot using the Combined Visual Servo Control Method (혼합 비주얼 서보 제어 기법을 이용한 이동로봇의 목표물 추종)

  • Lee, Ho-Won;Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제60권6호
    • /
    • pp.1245-1254
    • /
    • 2011
  • This paper proposes a target tracking algorithm for wheeled mobile robots using in various fields. For the stable tracking, we apply a vision system to a mobile robot which can extract targets through image processing algorithms. Furthermore, this paper presents an algorithm to position the mobile robot at the desired location from the target by estimating its relative position and attitude. We show the problem in the tracking method using the Position-Based Visual Servo(PBVS) control, and propose a tracking method, which can achieve the stable tracking performance by combining the PBVS control with Image-Based Visual Servo(IBVS) control. When the target is located around the outskirt of the camera image, the target can disappear from the field of view. Thus the proposed algorithm combines the control inputs with of the hyperbolic form the switching function to solve this problem. Through both simulations and experiments for the mobile robot we have confirmed that the proposed visual servo control method is able to enhance the stability compared to of the method using only either PBVS or IBVS control method.

A Study on AC Servo System for FA using High-performance DSP (고성능 DSP기반의 FA 용 AC서보 시스템에 관한 연구)

  • 최치영;홍선기;김수길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제18권1호
    • /
    • pp.67-72
    • /
    • 2004
  • AC servo system has been implemented to FA system and also depends on its quality. Recently with the development of power switching device and DSP which has peripheral devices to control AC servo system, the servo technology has met a new development opportunity. A DSP based AC servo system with a 3-phase PMSM is proposed. The newly produced DSP TMX320F2812-version C which has the performance of fast speed, 150MIPS, and rich peripheral interface is used. Also space vector pulse width modulation (SVPWM) and the digital PI control are implemented to the servo system

Development of Ultrasonic Machine with Force Controlled Position Servo System (가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발)

  • 장인배;이승범;전병희
    • Transactions of Materials Processing
    • /
    • 제13권3호
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

Design of a Neuro-Fuzzy Observer for Speed-Sensorless Control of DC Servo Motor (직류 서보 전동기 센서리스 속도제어를 위한 뉴로-퍼지 관측기 설계)

  • Ahn, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제56권3호
    • /
    • pp.129-135
    • /
    • 2007
  • This paper deals with speed-sensorless control of DC servo motor using Neuro-Fuzzy Observer. DC servo motor has very low rotor inertia and excellent response characteristic and it is very useful to control torque and speed. It is easy to detect the voltage and current and resolver or encoder is used to measure a rotor speed. But it has a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve this problem, it is studied to detect a speed of DC servo motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this paper, the gain of the observer is properly set up using the Neuro-Fuzzy control and Neuro-Fuzzy Observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. It calculates the differentiation of the rotor current directly using the rotor current measured in the DC servo motor and estimates the speed of the rotor using the differentiation. Proposed speed sensorless control method is performed using the estimated speed. Also, it is proved feasibility of the proposed observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200[w] DC servo motor starting system.

$H_\infty$ Depth Controller Design for Underwater Vehicles (수중운동체의 $H_\infty$ 심도제어기 설계)

  • 이만형;정금영;김인수;주효남;양승윤
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제6권5호
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

AC Servo Motor Control Using Low Voltage High Performance DSP (저전압 고성능 DSP를 이용한 AC 서보모터 제어)

  • 최치영;홍선기
    • Journal of the Semiconductor & Display Technology
    • /
    • 제3권1호
    • /
    • pp.21-26
    • /
    • 2004
  • Recently with the development of power switching device and DSP which has peripheral devices to control AC servo system, the servo technology has met a new development opportunity. Those things make it possible to reduce the time of developing a AC servo system. Fixed point DSP such as TMS320F240x, and TMS320F28x series have a disadvantage in calculating floating number where TMS320C32 or TMS320C31 are floating point DSP. However they usually become a complex hardware system to implement the AC servo system and it increases the cost. In this study, a DSP based AC servo system with a 3-phase PMSM is proposed. The newly produced DSP TMX320F28l2-version C which has the performance of fast speed, 150MIPS, and a rich peripheral interface such as a 12bit high speed AD converter, QEP(Quadrature Encoder Pulse) circuit, PDPINT(Power Drive Protect Interrupt), SVPWM module and dead time module are used. This paper presents a method to overcome fixed point calculating using scaling all parameters. Also space vector pulse width modulation (SVPWM) using off-set voltage and a digital PI control are implemented to the servo system.

  • PDF