• Title/Summary/Keyword: Services Management

Search Result 9,844, Processing Time 0.038 seconds

A Study on the Evaluation of Fertilizer Loss in the Drainage(Waste) Water of Hydroponic Cultivation, Korea (수경재배 유출 배액(폐양액)의 비료 손실량 평가 연구)

  • Jinkwan Son;Sungwook Yun;Jinkyung Kwon;Jihoon Shin;Donghyeon Kang;Minjung Park;Ryugap Lim
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Korean facility horticulture and hydroponic cultivation methods increase, requiring the management of waste water generated. In this study, the amount of fertilizer contained in the discharged waste liquid was determined. By evaluating this as a price, it was suggested to reduce water treatment costs and recycle fertilizer components. It was evaluated based on the results of major water quality analysis of waste liquid by crop, such as tomatoes, paprika, cucumbers, and strawberries, and in the case of P component, it was analyzed by converting it to the amount of phosphoric acid (P2O5). The amount of nitrogen (N) can be calculated by discharging 1,145.90kg·ha-1 of tomatoes, 920.43kg·ha-1 of paprika, 804.16kg·ha-1 of cucumbers, 405.83kg·ha-1 of strawberries, and the fertilizer content of P2O5 is 830.65kg·ha-1 of paprika, 622.32kg·ha-1 of tomatoes, 477.67kg·ha-1 of cucumbers. In addition, trace elements such as potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) were also analyzed to be emitted. The price per kg of each item calculated by averaging the price of fertilizer sold on the market can be evaluated as KRW, N 860.7, P 2,378.2, K 2,121.7, Ca 981.2, Mg 1,036.3, Fe 126,076.9, Mn 62,322.1, Zn 15,825.0, Cu 31,362.0, B 4,238.0, Mo 149,041.7. The annual fertilizer loss amount for each crop was calculated by comprehensively considering the price per kg calculated based on the market price of fertilizer, the concentration of waste by crop analyzed earlier, and the average annual emission of hydroponic cultivation. As a result of the analysis, the average of the four hydroponic crops was 5,475,361.1 won in fertilizer ingredients, with tomatoes valued at 6,995,622.3 won, paprika valued at 7,384,923.8 won, cucumbers valued at 5,091,607.9 won, and strawberries valued at 2,429,290.6 won. It was expected that if hydroponic drainage is managed through self-treatment or threshing before discharge rather than by leaking it into a river and treating it as a pollutant, it can be a valuable reusable fertilizer ingredient along with reducing water treatment costs.

The Effect of Price Discount Rate According to Brand Loyalty on Consumer's Acquisition Value and Transaction Value (브랜드애호도에 따른 가격할인율의 차이가 소비자의 획득가치와 거래가치에 미치는 영향)

  • Kim, Young-Ei;Kim, Jae-Yeong;Shin, Chang-Nag
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.247-269
    • /
    • 2007
  • In recent years, one of the major reasons for the fierce competition amongst firms is that they strive to increase their own market shares and customer acquisition rate in the same market with similar and apparently undifferentiated products in terms of quality and perceived benefit. Because of this change in recent marketing environment, the differentiated after-sales service and diversified promotion strategies have become more important to gain competitive advantage. Price promotion is the favorite strategy that most retailers use to achieve short-term sales increase, induce consumer's brand switch, in troduce new product into market, and so forth. However, if marketers apply or copy an identical price promotion strategy without considering the characteristic differences in product and consumer preference, it will cause serious problems because discounted price itself could make people skeptical about product quality, and the changes of perceived value might appear differently depending on other factors such as consumer involvement or brand attitude. Previous studies showed that price promotion would certainly increase sales, and the discounted price compared to regular price would enhance the consumer's perceived values. On the other hand, discounted price itself could make people depreciate or skeptical about product quality, and reduce the consumers' positivity bias because consumers might be unsure whether the current price promotion is the retailer's best price offer. Moreover, we cannot say that discounted price absolutely enhances the consumer's perceived values regardless of product category and purchase situations. That is, the factors that affect consumers' value perceptions and buying behavior are so diverse in reality that the results of studies on the same dependent variable come out differently depending on what variable was used or how experiment conditions were designed. Majority of previous researches on the effect of price-comparison advertising have used consumers' buying behavior as dependent variable. In order to figure out consumers' buying behavior theoretically, analysis of value perceptions which influence buying intentions is needed. In addition, they did not combined the independent variables such as brand loyalty and price discount rate together. For this reason, this paper tried to examine the moderating effect of brand loyalty on relationship between the different levels of discounting rate and buyers' value perception. And we provided with theoretical and managerial implications that marketers need to consider such variables as product attributes, brand loyalty, and consumer involvement at the same time, and then establish a differentiated pricing strategy case by case in order to enhance consumer's perceived values properl. Three research concepts were used in our study and each concept based on past researches was defined. The perceived acquisition value in this study was defined as the perceived net gains associated with the products or services acquired. That is, the perceived acquisition value of the product will be positively influenced by the benefits buyers believe they are getting by acquiring and using the product, and negatively influenced by the money given up to acquire the product. And the perceived transaction value was defined as the perception of psychological satisfaction or pleasure obtained from taking advantage of the financial terms of the price deal. Lastly, the brand loyalty was defined as favorable attitude towards a purchased product. Thus, a consumer loyal to a brand has an emotional attachment to the brand or firm. Repeat purchasers continue to buy the same brand even though they do not have an emotional attachment to it. We assumed that if the degree of brand loyalty is high, the perceived acquisition value and the perceived transaction value will increase when higher discount rate is provided. But we found that there are no significant differences in values between two different discount rates as a result of empirical analysis. It means that price reduction did not affect consumer's brand choice significantly because the perceived sacrifice decreased only a little, and customers are satisfied with product's benefits when brand loyalty is high. From the result, we confirmed that consumers with high degree of brand loyalty to a specific product are less sensitive to price change. Thus, using price promotion strategy to merely expect sale increase is not recommendable. Instead of discounting price, marketers need to strengthen consumers' brand loyalty and maintain the skimming strategy. On the contrary, when the degree of brand loyalty is low, the perceived acquisition value and the perceived transaction value decreased significantly when higher discount rate is provided. Generally brands that are considered inferior might be able to draw attention away from the quality of the product by making consumers focus more on the sacrifice component of price. But considering the fact that consumers with low degree of brand loyalty are known to be unsatisfied with product's benefits and have relatively negative brand attitude, bigger price reduction offered in experiment condition of this paper made consumers depreciate product's quality and benefit more and more, and consumer's psychological perceived sacrifice increased while perceived values decreased accordingly. We infer that, in the case of inferior brand, a drastic price-cut or frequent price promotion may increase consumers' uncertainty about overall components of product. Therefore, it appears that reinforcing the augmented product such as after-sale service, delivery and giving credit which is one of the levels consisting of product would be more effective in reality. This will be better rather than competing with product that holds high brand loyalty by reducing sale price. Although this study tried to examine the moderating effect of brand loyalty on relationship between the different levels of discounting rate and buyers' value perception, there are several limitations. This study was conducted in controlled conditions where the high involvement product and two different levels of discount rate were applied. Given the presence of low involvement product, when both pieces of information are available, it is likely that the results we have reported here may have been different. Thus, this research results explain only the specific situation. Second, the sample selected in this study was university students in their twenties, so we cannot say that the results are firmly effective to all generations. Future research that manipulates the level of discount along with the consumer involvement might lead to a more robust understanding of the effects various discount rate. And, we used a cellular phone as a product stimulus, so it would be very interesting to analyze the result when the product stimulus is an intangible product such as service. It could be also valuable to analyze whether the change of perceived value affects consumers' final buying behavior positively or negatively.

  • PDF

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

A Study on the Effect of Booth Recommendation System on Exhibition Visitors Unplanned Visit Behavior (전시장 참관객의 계획되지 않은 방문행동에 있어서 부스추천시스템의 영향에 대한 연구)

  • Chung, Nam-Ho;Kim, Jae-Kyung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.175-191
    • /
    • 2011
  • With the MICE(Meeting, Incentive travel, Convention, Exhibition) industry coming into the spotlight, there has been a growing interest in the domestic exhibition industry. Accordingly, in Korea, various studies of the industry are being conducted to enhance exhibition performance as in the United States or Europe. Some studies are focusing particularly on analyzing visiting patterns of exhibition visitors using intelligent information technology in consideration of the variations in effects of watching exhibitions according to the exhibitory environment or technique, thereby understanding visitors and, furthermore, drawing the correlations between exhibiting businesses and improving exhibition performance. However, previous studies related to booth recommendation systems only discussed the accuracy of recommendation in the aspect of a system rather than determining changes in visitors' behavior or perception by recommendation. A booth recommendation system enables visitors to visit unplanned exhibition booths by recommending visitors suitable ones based on information about visitors' visits. Meanwhile, some visitors may be satisfied with their unplanned visits, while others may consider the recommending process to be cumbersome or obstructive to their free observation. In the latter case, the exhibition is likely to produce worse results compared to when visitors are allowed to freely observe the exhibition. Thus, in order to apply a booth recommendation system to exhibition halls, the factors affecting the performance of the system should be generally examined, and the effects of the system on visitors' unplanned visiting behavior should be carefully studied. As such, this study aims to determine the factors that affect the performance of a booth recommendation system by reviewing theories and literature and to examine the effects of visitors' perceived performance of the system on their satisfaction of unplanned behavior and intention to reuse the system. Toward this end, the unplanned behavior theory was adopted as the theoretical framework. Unplanned behavior can be defined as "behavior that is done by consumers without any prearranged plan". Thus far, consumers' unplanned behavior has been studied in various fields. The field of marketing, in particular, has focused on unplanned purchasing among various types of unplanned behavior, which has been often confused with impulsive purchasing. Nevertheless, the two are different from each other; while impulsive purchasing means strong, continuous urges to purchase things, unplanned purchasing is behavior with purchasing decisions that are made inside a store, not before going into one. In other words, all impulsive purchases are unplanned, but not all unplanned purchases are impulsive. Then why do consumers engage in unplanned behavior? Regarding this question, many scholars have made many suggestions, but there has been a consensus that it is because consumers have enough flexibility to change their plans in the middle instead of developing plans thoroughly. In other words, if unplanned behavior costs much, it will be difficult for consumers to change their prearranged plans. In the case of the exhibition hall examined in this study, visitors learn the programs of the hall and plan which booth to visit in advance. This is because it is practically impossible for visitors to visit all of the various booths that an exhibition operates due to their limited time. Therefore, if the booth recommendation system proposed in this study recommends visitors booths that they may like, they can change their plans and visit the recommended booths. Such visiting behavior can be regarded similarly to consumers' visit to a store or tourists' unplanned behavior in a tourist spot and can be understand in the same context as the recent increase in tourism consumers' unplanned behavior influenced by information devices. Thus, the following research model was established. This research model uses visitors' perceived performance of a booth recommendation system as the parameter, and the factors affecting the performance include trust in the system, exhibition visitors' knowledge levels, expected personalization of the system, and the system's threat to freedom. In addition, the causal relation between visitors' satisfaction of their perceived performance of the system and unplanned behavior and their intention to reuse the system was determined. While doing so, trust in the booth recommendation system consisted of 2nd order factors such as competence, benevolence, and integrity, while the other factors consisted of 1st order factors. In order to verify this model, a booth recommendation system was developed to be tested in 2011 DMC Culture Open, and 101 visitors were empirically studied and analyzed. The results are as follows. First, visitors' trust was the most important factor in the booth recommendation system, and the visitors who used the system perceived its performance as a success based on their trust. Second, visitors' knowledge levels also had significant effects on the performance of the system, which indicates that the performance of a recommendation system requires an advance understanding. In other words, visitors with higher levels of understanding of the exhibition hall learned better the usefulness of the booth recommendation system. Third, expected personalization did not have significant effects, which is a different result from previous studies' results. This is presumably because the booth recommendation system used in this study did not provide enough personalized services. Fourth, the recommendation information provided by the booth recommendation system was not considered to threaten or restrict one's freedom, which means it is valuable in terms of usefulness. Lastly, high performance of the booth recommendation system led to visitors' high satisfaction levels of unplanned behavior and intention to reuse the system. To sum up, in order to analyze the effects of a booth recommendation system on visitors' unplanned visits to a booth, empirical data were examined based on the unplanned behavior theory and, accordingly, useful suggestions for the establishment and design of future booth recommendation systems were made. In the future, further examination should be conducted through elaborate survey questions and survey objects.