• Title/Summary/Keyword: Serum DNA

Search Result 409, Processing Time 0.029 seconds

Production of Human Serum Albumin in Chloroplast-Transformed Tobacco Plants

  • Ko, Suk-Min;Kim, Hyun-Chul;Yoo, Byung-Ho;Woo, Je-Wook;Chung, Hwa-Jee;Choi, Dong-Woog;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.233-236
    • /
    • 2006
  • Human serum albumin (HSA) is the most abundant protein in plasma and is the most often used intravenous protein in many human therapies. However, HSA is currently extracted only from plasma because commercially feasible recombinant expression systems are not available. This study attempted to develop an efficient system for recombinant HSA production by chloroplast transformation of tobacco. A HSA cDNA was isolated from a cDNA library constructed with human liver tissue. Chloroplast transformation vectors were constructed by introducing various regulatory elements to HSA regulatory sequences. Vectors were delivered by particle bombardment into leaf explants and chloroplast-transformed plants were subsequently regenerated into whole plants. Southern blot analysis confirmed that the HSA cDNA was incorporated between rps12 and orf70B of the chloroplast genome as designed. Western blot analysis revealed that hyper-expression and increasing the stability of HSA were achieved by modification of the regulatory sequences using the psbA5'UTRs in combination with elements of the 14 N-terminal amino acids of the GFP and the FLAG tag. However, only plants transformed with the vector containing all of these elements were able to accumulate HSA.

Effect of Unilatromral Pneumonectomy on the Compensatory Growth of the Residual Lung, Liver, and Kidney, ana Serum Electrophoresis Pattern (일측폐장절제가 잔류폐, 간 및 신장의 대상성 증식과 혈청전기영동상에 미치는 영향)

  • Lee, Young-Man;Lee, Suck-Kang;Choo, Young-Eun
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.177-182
    • /
    • 1983
  • In order to clarify the effect of the unilateral pneumonectomy on the compensatory growth of the residual lung, liver and kidney, and serum electrophoresis pattern, right lung pneumonectomy was performed on rabbits under general anesthesia with pentobarbital sodium. On the fifth day after the surgery, the weight of the residual lung, liver and bilateral kidneys was measured and organ weight-body weight ratio was calculated. And in an attempt to know whether the cells in the liver and the kidney were proliferated by unilateral pneumonectomy, DNA content was determined. The quantity(g/100 ml) of serum protein was determined also and serum electrophoresis was performed on cellulose acetate membrane. The results obtained are summarized as following. The weight of the residual lung and lung weight-body weight ratio was significantly increased respectively. The weight of the liver and organ weight-body weight ratio were not changed but the DNA content of the liver and kidney tissue increased significantly, illustrating that unilateral pneumonectomy caused cellular hyperplasia in the liver and in the kidney as well as in the residual lung. The quantity(g/100 ml) of serum protein was significantly increased and in the analysis of the electrophoregram, there was significant difference between the normal and pneumonectomy group. Taken together, these results indicate that unilateral pneumonectomy caused the compensatory hyperplasia of the liver, the kidney and the residual lung as well as the change of electro-phoretic pattern. And it also suggests that a humoral factor, which proliferates the cells in the residual lung, the liver and the kidney, existed in the pneumonectomized rabbits.

  • PDF

Effect of Iron(II)-ascorbate Complex on Protein and DNA of Phages (파아지 단백질 및 DNA에 대한 2가철-아스코르빈산착체의 영향)

  • Lho, Il-Hwan;Murata, Akira
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.46-51
    • /
    • 1993
  • The inactivating effect of iron(II)-ascorbate complex (Fe-Asc) on various phages was previously reported. This paper describes the molecular target in the phage virion attacked by Fe-Asc. The effect of Fe-Asc on protein was investigated with bovine serum albumin and the structural protein of phage J1. There were no differences in the SDS-polyacrylamide gel electrophoresis (patterns of these two proteins when either they were treated) with Fe-Asc or not. Also, there were no changes in the amino acid composition and ultraviolet spectrum of the proteins. The effects of Fe-Asc on DNA was investigated with pUC18 DNA, M13mpB DNA and ${\lambda}$ DNA as well as DNA from phage J1. Fe-Asc caused initially nicking of the subsequently form of pUC18 DNA to yield the open circular form and then subsequently the linear form. Strand breaks were also confirmed with M13mp8 DNA and ${\lambda}$ DNA as well as J1 DNA. The results indicate that the strand breaks in phage DNA could be responsible for the inactivation of phages by Fe-Asc.

  • PDF

The Gene Expression Profiling in Murine Cortical Cells Undergoing Programmed Cell Death (PCD) Induced by Serum Deprivation

  • Yang, Moon-Hee;Yoo, Kyung-Hyun;Yook, Yeon-Joo;Park, Eun-Young;Jeon, Jeong-Ok;Choi, Seo-Hee;Park, So-Young;Woo, Yu-Mi;Lee, Min-Joo;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.277-285
    • /
    • 2007
  • PCD (programmed cell death) is important mechanism for development, homeostasis and disease. To analyze the gene expression pattern in brain cells undergoing PCD in response to serum deprivation, we analyzed the cDNA microarray consisting of 2,300 genes and 7 housekeeping genes of cortical cells derived from mouse embryonic brain. Cortical cells were induced apoptosis by serum deprivation for 8 hours. We identified 69 up-regulated genes and 21 down-regulated genes in apoptotic cells. Based on the cDNA microarray data four genes were selected and analyzed by RT-PCR and northern blotting. To characterize the role of UNC-51-like kinase (ULK2) gene in PCD, we investigated cell death effect by ULK2. And we examined expression of several genes that related with PCD. Especially GAPDH was increased by ULK2. Theses findings indicated that ULK2 is involved in apoptosis through p53 pathway.

Benzo(a)pyrene-Triglyceride Adduct: a Potential Molecular Biomarker for Carcinogen Exposure

  • Lee, Byung-Mu
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05b
    • /
    • pp.20-45
    • /
    • 2002
  • In this study, we demonstrated the in vitro and in vivo formation of carcinogen-lipid adduct and its correlation with DNA or protein adducts. The lipids from serum or hepatocyte membranes of Spragu-Dawley rats. human serum, and standard major lipids were in vitro reacted with benzo[a]pyrene(BP) and BP metabolites. 7,8-Dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]-pyrene(BPDE-I), an ultimate carcinogenic form of BP, was covalently bound to triglyceride(TG). BPDE-I-TG adducts isolated by thin-layer chromatography (TLC) were further detected by high performance liquid chromatography(HPLC). TGs, including triolein, tripalmitin and tristearin, showed positive reactions with BPDE-I. However, cholesterol, phospholipids(Phosphatidylcholine, phosphatidyl-ethanolamine, phosphatidyl-inositol and sphingomyelin) and nonesterified fatty acids(palmitic acid, oleic acid, linoleic acid and stearic acid) did not react with BPDE-I. In addition, other BP metabolites (BP-phenols and -diols) did not react with TG, which TG appeared to be the most reactive lipid yet studied with respect to its ability to form an adduct with BPDE-I. There was a clear-cut dose-respect to its ability to form an adduct with BPDE-I-lipid adduct in vitro between TG and [1,3-3H]BPDE-I. In an animal study, BPDE-I-TG was also formed in the serum of rats orally treated with BP(25 mg/rat). Also, obvious correlations between [3H]BP related-biomolecule adducts (DNA, protein) or lipid damage and the BPDE-I-TG adduct were obtained in various tissues of mice i.p. treated with [3H]BP. These data suggest that TG can form an adduct with BPDE-I, as do other macromolecules (DNA, RNA, and protein). Therefore, a carcinogen-lipid adduct would be a useful biomarker for chemical carcinogenesis research and cancer risk assessment.

  • PDF

Cloning and characterization of the multiprotein bridging factor 1 (YIMBFI) gene from the dimorphi yeast Yarrowia lipolytica

  • Kim, Jeong-Yoon;Kim, Jang-Hwan;Cheon, Seong-Ah;Yunkyoung Song
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.173-177
    • /
    • 2002
  • In order to identify Yawowia lipolytica genes induced by serum, cDNA representational difference analysis was performed using a PCR-select CDNA subtraction method. One of the genes cloned from the subtraction was a gene (YIMBFl) homologous to Saccharomyces cerevisiae MBF1 encoding the coactivator multiprotein bridging factor 1. Disruption of YIMBFl revealed that the gene was net essential for viability, and the Ylmbf△ strain did not show any distinct phenotypic change on solid serum medium. In liquid medium, however. a difference was found in the ability to maintain hyphae induced by serum. This result suggests that the YIMbf1 protein may mediate transcriptional activation of certain genes involved in the hypha fonmation of Y. lipolytica.

non-viral gene delivery mediated by chitosan and PEl: developement of a gene carrier with serum stability and reduced cytotoxicity

  • Kim, Mi-Na;Hyun, Min-Sang;Jiang, Ge;Chung, Kyeong-Soo;Yeom, Young-Il
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.277.1-277.1
    • /
    • 2002
  • The purpose of this study was to develop PEl-based gene carriers with optimal serum stability and reduced cytotoxicity. PEl is an efficient gene transfer agent with the ability of DNA condensation and endosome escape: however; use of the polymer in vivo is hampered by signigicant reduction in transfection activity by the presence of serum. Chitosan is a non-toxic. biodegradable and biocompatible polymer with hydrophilic functional groups so it may provide a physical stability against challenge by serum proteins. (omitted)

  • PDF

ATP and Purinergic Receptor Agonists Stimulate the Mitogen-Activated Protein Kinase Pathway and DNA Synthesis in Mouse Mammary Epithelial Cells

  • Yuh In-Sub
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • The effects of adenosine 5'-triphosphate (ATP) and ATP analogs, P/sub 2y/ purinoceptor agonists, on growth of normal mouse mammary epithelial cells (NMuMG) were examined. Cells were plated onto 24 well plates in DMEM supplemented with 10 % fetal calf serum. After serum starvation for 24 hours, ATP, P/sub 2y/ purinoceptor agonists (AdoPP[NH]P, ATP-α-S, ATP-γ-S, β, γ-me-ATP and 2me-S-ATP), P/sub 2u/ purinoceptor agonist (UTP) and P/sub 2y/ purinoceptor antagonists (Reactive Blue 2, more selective to P/sub 2y/ receptor than PPADS; PPADS) were added. DNA synthesis was estimated as incorporation of 3H-thymidine into DNA (1 hour pulse with 1 μ Ci/ml, 18~19 hours after treatment). ATP, Adopp[NH]P, ATP-α-S or ATP-γ-S, significantly increased DNA synthesis at 1, 10 and 100 μM concentrations with dose-dependency (P<0.05), and the maximum responses of ATP and ATP analogs were shown at 100 μM concentration (P<0.05). The potency order of DNA synthesis was ATP≥ATP- γ -S>Adopp [NH]P>ATP-α-S. β, γ -me-ATP, 2me-S-ATP and UTP did not increase DNA synthesis. In autoradiographic analysis of percentage of S-phase cells, similar results were observed to those of DNA synthesis. Addition of 1, 10 or 100 μM Reactive Blue 2 or PPADS significantly decreased ATP (100 μM)-induced DNA synthesis, however, PPADS was less effective than Reactive Blue 2. In Elvax 40P implant experiment, ATP directly stimulated mammary endbud growth in situ suggesting the physiological regulator of ATP in mammary growth. ATP 100 μM rapidly increased MAPK activity, reaching a maximum at 5 min and then gradually decreasing to the base level in 30 min. ATP analogs, Adopp[NH]P and ATP-γ-S also increased MAPK activity, however, β, γ-me-ATP and 2me-S-ATP did not. The inhibitor of the upstream MAPK kinase (MEK), PD 98059 (25 μM), effectively reduced ATP (100 μM) or EGF(10 ng/ml, as positive control)-induced MAPK activity and DNA synthesis (P<0.05). These results indicate that ATP-induced DNA synthesis was prevented from the direct inhibition of MAPK kinase pathway. Overall results support the hypothesis that the stimulatory effects of normal mouse mammary epithelial growth by addition of ATP or ATP analogs are mediated through mammary tissue specific P/sub 2y/ purinoceptor subtype, and MAPK activation is necessary for the ATP-induced cell growth.

Alterations in Prolactin Messenger Ribonucleic Acid Level During the Rat Estrous Cycle: Effect of Naloxone (흰쥐 성주기간동안 Prolactin mRNA의 변화:Naloxone)

  • 안혜영;유선경;조병남;김경진;유경자;조완규
    • The Korean Journal of Zoology
    • /
    • v.33 no.2
    • /
    • pp.183-190
    • /
    • 1990
  • The present study exarnines the physiological alteradons in prolactin (PRL) messenger ribonucleic acid (mRNA) and serum PRL levels during the rat estrous cycle and the effed of naloxone, an endogenous oploid peptide receptor antagonist, on PRL gene expression during the rat estrous cycle. Adult female rats exhibiting at least two consecutive 4-day estrous cycles were used in this study. A single injection of naloxone (2mg/kg b.w.) or saline was given sc 30 mm prior to decapitation. Animals were sacrificed at 10:00 h of each stage of the estrous cycle, and at 2-h intervals from 10:00 h to 20:00 h during the proestrus. PRL mRNA and serum PRL levels were determined by a RNA-blot hybridization with the rat PRL cDNA probe and by a PRL radjoimmunoassay, respectively. PRL mRNA and serum PRL levels were not dramatically altered in the morning of each stage of diestrus I, II and proestrus, and naloxone failed to modify the two parameters. During estrus naloxone clearly suppressed serum PRL levels, but it was unable to modify PRL mRNA levels. A more detailed examination of the proestrus stage revealed that PRL mRNA and serum PRL levels were fluctuated as a function of time: PRL mRNA levels reached a maximum level at 12:00 h and gradually decreased until 18:00 h. PRL mRNA levels then rose at 20:00 h. No difference of PRL mRNA levels between the control and naloxone-treated groups was observed. Changes in serum PRL levek during proestrus were conversely related to changes in PRL mRNA: serum PRL levels were low from 10:00 h to 14:00 h, then increased and reached a maximum level at 16:00-18:00 h. Following then, serum PRL levels were decreased. Naloxone was effective in suppressing the charaderistic afternoon surge of PRL from 16:00 h to 20:00 h. These data clearly showed that alterations in PRL mRNA levels were conversely correlated with changes mn serum PRL levels on proestrus, indicating a differential regulation of PRL gene expression and secretion.

  • PDF

Application of Oral Fluid Sample to Monitor Porcine circovirus-2 Infection in Pig Farms (구강액을 이용한 양돈장의 Porcine circovirus-2 감염에 대한 모니터링)

  • Kim, Won-Il
    • Journal of Veterinary Clinics
    • /
    • v.27 no.6
    • /
    • pp.704-712
    • /
    • 2010
  • Porcine circovirus-2 (PCV2) has been implicated in many clinical diseases/syndromes that are now referred to as PCV-associated diseases (PCVAD). Due to significant economic losses caused by PCVAD, many swine operations have launched extensive monitoring programs for PCV2. Traditional serum sampling is, however, rather expensive and laborious, hampering effective large scale pathogen surveillance. A field-based longitudinal study was conducted to assess the utility of pen-based oral fluid sample as an alternative to serum for herd PCV2 testing. Six pens (25 pigs/pen) at each of 3 different sites were used in the study. One oral fluid and 5 random serum samples per pen were collected at 3, 5, 8, 12, and 16 weeks of age, and the sera were pooled by pen for testing. All samples were tested for PCV2 by real-time PCR and for antibodies by indirect fluorescent antibody test (for both anti-PCV2 IgG and IgA) and 3 ELISA assays (blocking ELISA, indirect ELISA, and IgG/IgM sandwich ELISA). PCV2 DNA was detected in oral fluid samples sporadically until 8 weeks and in all pens at 16 weeks. PCV2-specific IgG was detected in oral fluid samples at 3 weeks and persisted until 5 to 8 weeks in all sites. Anti-PCV2 IgG and IgA were detectable in oral fluid samples collected at 16 weeks from all of the pens at 1 site. The detection of PCV2 and anti-PCV2 antibody in oral fluid samples correlated positively with results on pooled sera, suggesting that oral fluids can be a cost-effective alternative to serum for herd monitoring of PCV2 infection.