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Abstract

Human serum albumin (HSA) is the most abundant protein
in plasma and is the most often used intravenous protein in
many human therapies. However, HSA is currently extracted
only from plasma because commercially feasible recom-
binant expression systems are not available. This study
attempted to develop an efficient system for recombinant
HSA production by chloroplast transformation of tobacco. A
HSA cDNA was isolated from a cDNA library constructed
with human liver tissue. Chloroplast transformation vectors
were constructed by introducing various regulatory elements
to HSA regulatory sequences. Vectors were delivered by
particle bombardment into leaf explants and chloroplast-
transformed plants were subsequently regenerated into
whole plants. Southern biot analysis confirmed that the HSA
cDNA was incorporated between rps12 and orff0B of the
chloroplast genome as designed. Western blot analysis
revealed that hyper-expression and increasing the stability
of HSA were achieved by modification of the regulatory
sequences using the psbA5'UTRs in combination with ele-
ments of the 14 N-terminal amino acids of the GFP and the
FLAG tag. However, only plants transformed with the vector
containing all of these elements were able to accumulate
HSA. '
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Introduction

Human serum albumin (HSA) is the most abundant
protein in plasma and is the most often used intravenous
protein in manyhuman therapies. HSA is produced in the
liver and rapidly secreted to the extracelluar space. Hepa-
tocytes initially synthesize albumin as a prepro-protein of
609 amino acids, and subsequent posttransiational proce-
sses give rise to a mature monomeric protein with 585
amino acids (Dugaiczyk et al. 1982). The annual world-
wide needs over 500 tons, representing a market value of
more than $ 1.5 billion (Millan et al. 2003). However, HSA
is currently extracted only from plasma because comme-
rcially feasible recombinant expression systems are not
available. Although HSA cDNA has been expressed heter-
ologously in E. coli (Latta et al. 1987), Saccharomyces
cerevisiae (Quirk et al. 1989), Pichia pastoris (Ohtani et al.
1998, Watanabe et al. 2001), no system is yet comm-
ercially feasible.

On the other hands, plants as biofactories for the
production of proteins are employed bya number of groups
for the synthesis of edible vaccines, pharmaceuticals.
Especially, chloroplast genetic engineering offers several
unique advantages over nuclear transformation, which
includes high expression levels of the recombinant pro-
teins, multi-gene engineering in a single transformation
event and transgene containment by maternal inheritance
expression, as well as a lack of positional and pleiotropic
effects and undesirable foreign DNA. DeCosa et al. (2001)
reported that Bacillus thuringiensis (Bt) cry2Aa2 protein
was produced in transgenic tobacco chloroplasts up to
46% of the total leaf protein.

Sijmons et al. (1990) firstly tried to express HSA in
tobacco by nuclear transformation, but very low expression
levels were attained (0.02% TSP). Recently, Millan et
al.(2003) have reported that modification of regulatory
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Figure 1. The nucleotide and deduced amino acid sequences
of a HSA cDNA.
This clone contains the mature HSA coding sequence preceded
by the ribosomal binding site and it has an ATG as the
initiation codon.

sequences using chloroplast untranslational regions resu-
lted in hyper-expression of HSA (11% TSP). However, HSA
produced in transgenic chloroplasts formed inclusion bo-
dies. This study attempted to develop an efficient system
for HSA production by adding various regulatory elements
to the upstream of a HSA ¢DNA. In addition, a sequence
for the FLAG tag that facilitates purification of recombinant
HSA proteins from transformed chloroplastswas also intro-
duced into a vector.

Materials and Methods

Plant Material

Tobacco (Nicotiana tabacum L. cv. Samsun) plantlets
were maintained in flasks containing Murashige and Skoog
(1962) basal medium. Leaf blades (approximately 3 cm
long) were excised and were subjected to particle bom-
bardment.

HSA c¢DNA Cloning and Construction of
Chloroplast Transformation Vectors

The HSA cDNA was amplified by RT-PCR using cDNA
library constructed with human liver. The ATG start codon
sequence and ribosomal binding site (RBS) were intro-
duced in PCR primers (5-GAAGGAGATATACCCATGG-
ATGCACACAAGAGTGAGGT-3', 5-TTATAAGCCTAAGGC-
AG-3'). The PCR fragment was cloned into the EcoRV sites
of pBluescript KS vector and confirmed by sequencing (Fig.
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Figure 2. Chloroplast transformation vectors containing various
regulatory sequences.

The aminoglycoside 3' adenylyltransferase (aadA) gene for
resistance to spectinomycin and the HSA gene driven by the
constitutive promoter of the rRNA operon (Prrn).

1). pTRH vector series was constructed by inserting the
HSA EcoRV fragments into the multicloning site of the pTR
vector containing the psbA5'UTR sequence, a sequence
encoding the first 14 amino acids of GFP, and the FLAG
tag sequence (Fig. 2). These elements were incorporated
singly or in combination into the 5'-regulatory sequence of
the HSA cDNA in vectors.

Particle Bombardment and Regeneration of
Chloroplast-Transformed Plants

Leaf blades were placed abaxial side up onto filter
paper discs on MS medium supplemented with 4.44 uM 6-
benzyladenine and (.54 uM a-naphthalaneacetic acid in
plastic Petri dishes (37 x 15 mm). Gold particles (0.6 uM
in diameter) coated with plasmid DNA (pTRH series) were
bombarded into leaf blades using the particle delivery
system PSD1000/He (BioRad). After 48 hrs of incubation
at 25°C in the dark, leaf blades were cut into segments (5
x 5 mm) and were placed adaxial side up on selection
medium (RMOP containing 500 mg/l spectinomycin dihy-
drochloride, Daniell, 1997). Spectinomycin-resistant shoots
obtained after 5-6 weeks were cut into segments (3 x 3
mm) and were placed onto plates containing the selection
medium.

PCR and Southern Blot Analysis

Total genomic DNA from putative transgenic and wild-
type plant was extracted using the DNeasy plant DNA
Isolation Kit (Qiagen). PCR was carried out using the
chloroplast flanking sequence (P1 and P2). After dena-
turation for 5 min at 94 C, samples were carried through 30
cycles using the following PCR conditions; 94C for 30 s,
55C for 30 s, and 72°C for 120 s.

For southern blot analysis, genomic DNA (10TCg) was
digested with EcoRV that has no cut in the internal HSA
coding region. Digested DNA was separated by electropho-
resis on a 0.8% agarose gel, transferred to nylon mem-
brane, and hybridized with **P-labeledchloroplast flanking
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Figure 3. Production of chloroplast transformants. A, Adve-
ntiitous shoots formed on leaf explant in first round selection; B,
Adventiitous shoots formed on leaf explant in second round
selection; C, Root induction of chloroplast transformants; D,
Chloroplast transformants grown in soil.
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Figure 4. PCR analysis of wild-type plant and putative chlo-
roplast transformants using two primer sets: (A) P1-P2 and (B)
P3-P4. (A) Lane 1: 1 kb ladder Lane 2: wild-type plant Lane
3-5: putative transformants. (B) Lane 1: wild-type plant; Lane
2-5; putative transformants Lane 6: control plasmid Lane 7; 1
kb ladder.

region used for homologous recombination following stand-
ard procedures (Sambrook et al. 1989).

Western Blot Analysis

Total protein from transformed and untransformed toba-
cco leaves extracted with protein extraction buffer (200 mM
Tris-HCI pH 8.0, 100 mM NaCl, 400 mM sucrose, 14 mM
BME, 0.05% Tween20, 0.1% SDS, 2 mM PMSF). Total
protein (20 ng) was separated by a 10% SDS- PAGE and
transferred to a PVDF membrane for immunoblotting. The
primary antibody (rabbit anti-HSA, Sigma) was used at
1:10,000 dilution, and the secondary antibody (goat anti-
rabbit HRP conjugated, Sigma) at 1:15,000. Detection was
performed with the ECL kit (Amersham) as described in the
kit protocol.
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Figure 5. Southern blot analysis of chloroplast transformants.
Plant DNA was digested with EcoRV and hybridized with a 0.9
kb probe, which contained the chloroplast flanking sequences
used for homologous recombination. Lane 1: AHindlll size
marker Lane 2: wild-type plant Lanes 3-6: transformants.
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Figure 6. Western blot analysis of chloroplast transformants.
Total soluble protein (20 pg) was separated by SDS-12%
PAGE with HSA standards (50, 100 and 200 ng), which also
contained 20 pg wild-type total soluble protein.

Results and Discussion

Putative transformants selected on spectinomycin-con-
taining medium were grown to maturity in a greenhouse
(Fig. 3). Putative chloroplast transformants produced an
extra PCR band of 1.8 kb as expected (Fig. 4). To verify
site-specific integration, southern blot analysis was carried
out with the probe containing the flanking chloroplast border
sequence of rps12 and orf70B (Fig. 5). A 0.9 kb and a 4.1
kb fragment were obtained from wild-type and transformed
plants, respectively, when total plant DNAs digested with
EcoRV were subjected to electrophoresis, indicating that
the aadA and HSA genes were incorporated between rps12
and orf70B in the chloroplast genome.

Many human proteins including serum albumin are highly
susceptibleto proteolytic degradation (Millan et al. 2003).
Therefore, it is required to direct hyper-expression at the
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transcription and translation of the transgene and stabili-
zation of recombinant proteins in the chloroplast for their
high accumulation. In this study, elements of the psb5'UTR,
the N-terminal GFP, and the FLAG tag were introduced
singly or in combination into the 5' regulatory sequence.
As it turned out, only plants carrying all of the regulatory
elements were able to accumulate HSA (Fig. 6). However,
when either one of these elements was lacking, plants
accumulated no HSA. Among three. of theses sequences,
the psb5'UTR sequence was prerequisite to accumulation
of HSA. However, we do not know whether both elements
of the N-terminal GFP and the FLAG tag are necessary for
accumulation of HSA. It is because all possible combination
of the regulatory elements was not tested.

The FLAG tag sequence was introduced into vectors to
facilitate purification of recombinant HSA proteins from
chloroplast transgenic tobacco. However, the possibility of
enhanced stability of HSA by FLAG tag is not excluded in
this study. The exact expression level of HSA was not able
to be determined because the level was much lower than
the lowest level of reference HSA in western blot analysis
(Fig. 6). In this study,the FLAG tag sequence was intro-
duced to the chloroplast genome for the first time. Further
study is needed to establish the effective purification
system using the FLAG affinity gels.
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