• Title/Summary/Keyword: Series transformer

Search Result 356, Processing Time 0.031 seconds

A study on 7528W Class Fluorescent Lamp Ballast using a Piezoelectric Transformer by means of Onechip Microcontroller (Onechip Microcontroller에 의한 압전 변압기를 이용한 T5 28W급 형광등 전자식안정기에 관한 연구)

  • Hwang L. H.;Shin Y. H.;Cho S. R.;Jang E. S.;Cho M. T.;Ahn I. S.;Kim J. R.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.228-232
    • /
    • 2002
  • In this paper, In order to solve the problem is proposed using a new type of electronic ballast that the traditional magnetic ballasts operated at 50-60Hz have been suffered from noticeable flicker, high loss, large crest factor and heavy weight which is composed of rectifier, active power corrector, series resonant half bridge inverter, micro-controller and piezoelectric transformer for driving for driving T5 fluorescent lamp were manufactured. The proposed electronic ballast operated at high frequency (about 75kHz) shows a input power factor of more than 0.995, total harmonic distortion of less than $12\%$ and lamp current crest factor of less than 1.5, respectively. Output power and efficiency showed 28w and $85\%$, respectively. Accordingly, it is considered that the ballast using piezoelectric transformer can replace the typical electronic ballast.

  • PDF

High Selectivity Coupled Line Impedance Transformer with Second Harmonic Suppression

  • Kim, Phirun;Park, Junsik;Jeong, Junhyung;Jeong, Seungho;Chaudhary, Girdhari;Jeong, Yongchae
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 2016
  • This paper presents a design of an impedance transformer (IT) with high frequency selectivity characteristics. The frequency selectivity can be controlled by even- and odd-mode impedance of a shunt coupled transmission line (TL). For experimental validation, a 50- to $20-{\Omega}$ IT was implemented at a center frequency ($f_0$) of 2.6 GHz for the long-term evolution signal. The measured results were in good agreement with the simulations, showing a return loss higher than 19 dB over a passband bandwidth of 0.63 GHz (2.28-2.91 GHz) and good sharp frequency selectivity characteristic near to the passband. The series coupled TL provides a transmission zero at 5.75 GHz, whereas the shunt coupled TL provides three transmission zeros located at 2 GHz, 3.1 GHz, and 7.14 GHz.

An Analysis on the Characteristics of the Contact-less Power Supply (무접점 전원장치의 특성분석)

  • Lee, Hyun-Kwan;Lee, Gi-Sik;Chung, Bong-Geun;Kang, Sung-In;Kong, Young-Su;Kim, Eun-Soo;Kim, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.919-922
    • /
    • 2006
  • Comparing with the conventional transformer without the air gap, a contact-less transformer with the large air-gap (4.8cm) between the long primary winding and the secondary winding has the increased leakage inductance and the reduced magnetizing inductance. By the increased leakage inductance and the reduced magnetizing inductance on the primary of the contact-less transformer, a good deal of the primary current circulates through magnetizing inductance, which results in a massive loss in contact-less power supply (CPS). In this paper, the efficiency characteristics of the contact-less power supply using a series resonant converter is analyzed and simulated. The results are verified on the simulation based on the theoretical analysis and the 1.8kW experimental prototype.

  • PDF

Cascaded-transformer-based 3$^{n-1}$+2 level PWM Inverter (다단 변압기 기반 3$^{n-1}$+2 레벨 PWM 인버터)

  • Kang, Feel-Soon;Park, Jin-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.681-684
    • /
    • 2005
  • This paper presents a useful multilevel PWM inverter scheme based on a (3$^{n-1}$+2) level generation technique. It consists of a PWM inverter, an assembly of LEVEL inverters, and cascaded transformers. To produce high quality output voltage waves, it synthesizes a large number of output voltage levels using cascaded transformers, which have a series-connected secondary. By a suitable selection of secondary turn-ration of the transformer, the amplitude of an output voltage is appeared at the rate of an integer to an input dc source. Operational principles and analysis are illustrated in depth. The validity of the proposed system is verified through computer-aided simulations and experimental results using prototypes generation output voltages of an 11-level and a 29-level, respectively. And their results are compared with conventional counterparts.

  • PDF

A Modularized Charge Equalizer Using the Magnetizing Energy of the Multi-Winding Transformer (다권선 변압기의 자화 에너지를 이용한 모듈화 전하 균일 장치)

  • Lim, Chang-Soon;Hyun, Dong-Seok;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.393-400
    • /
    • 2012
  • The modularized equalizers normally use additional components among the modules in the long series-connected lithium-ion battery string. In these approaches, the overall systems are heavy, bulky, and high-priced. Furthermore, the losses related to additional components decrease the system efficiency. To avoid these problems, a modularized equalizer, which has no additional components among the modules, is required. This paper proposes a novel control scheme using the magnetizing energy of the multi-winding transformer for the module equalization. In this scheme, the high duty cycle is applied to the module where the voltage is higher than the reference voltage and the low duty cycle is applied to the module where the voltage is lower than the reference voltage. Due to the different duty cycle, more electric charges are transferred from high voltage module to the low voltage module during the turn-off switching interval. Using the proposed control scheme, the equalizer system does not suffer from the size, cost, and loss related to the modularization. The experimental results are provided to verify the effectiveness of the proposed modularized equalizer.

Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer (Solid State Transformer를 위한 양방향 Dual Active Bridge DC-DC 컨버터의 설계 기법)

  • Choi, Hyun-Jun;Lee, Won-Bin;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2017
  • Proper design guides are proposed for a practical dual-active bridge (DAB) converter based on the mathematical model on the steady state. The DAB converter is popular in bidirectional application due to its zero-voltage capability and easy bidirectional operation for seamless control, high efficiency, and performance. Some design considerations are taken to overcome the limitation of the DAB converter. The practical design methodology of power stage is discussed to minimize the conduction and switching losses of the DAB converter. Small-signal model and frequency response are derived and analyzed based on the generalized average method, which considers equivalent series resistance, to improve the dynamics, stability, and reliability with voltage regulation of the practical DAB converter. The design of closed-loop control is discussed by the derived small-signal model to obtain the pertinent gain and phase margin in steady-state operation. Experimental results of a 3.3 kW prototype of DAB converter demonstrate the validity and effectiveness of the proposed methods.

A Study on the Output Voltage Control of Series-Parallel Resonant type DC/DC Converter for Transverse Flux Linear Motor (TELM에 적용한 직병렬 공진형 DC/DC 컨버터의 출력전압 제어에 관한 연구)

  • Hwang Gye Ho;Lee Young Sik;Jeon Jin Yong;Bang Deok Je;Kim Ho Jong;Shin Byoung Chol;Kang Do Hyun;Kim Jong Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.9-16
    • /
    • 2005
  • In this paper, with loosely coupled transformer Relies-parallel resonant type DC/DC converter is analyzed and adopted to the power source of a TFLM(Transverse Flux Linear Motor). To get more efficient operating mode of the series-parallel resonant type DC/DC converter, theoretical analysis using normalized parameters are accepted. The analysis includes a specially made ferrite transformer with two separately wound half cores in order to evaluate analytically and experimentally the changes in magnetizing the leakage fluxes and inductances caused by the distance between the halves. The proposed converter must be operated in switching Pattern III among the three switching patterns for the Zero Voltage Switching operation. According to Pulse Frequency Modulation(PFM) control method, the output voltage of the proposed circuit can be controlled. The results of the theoretical development are compared with practical measurements from a prototype system.

  • PDF

Selective Harmonic Elimination in Multi-level Inverters with Series-Connected Transformers with Equal Power Ratings

  • Moussa, Mona Fouad;Dessouky, Yasser Gaber
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.464-472
    • /
    • 2016
  • This study applies the selective harmonic elimination (SHE) technique to design and operate a regulated AC/DC/AC power supply suitable for maritime military applications and underground trains. The input is a single 50/60 Hz AC voltage, and the output is a 400 Hz regulated voltage. The switching angles for a multi-level inverter and transformer turns ratio are determined to operate with special connected transformers with equal power ratings and produce an almost sinusoidal current. As a result of its capability of directly controlling harmonics, the SHE technique is applicable to apparatus with congenital immunity to specific harmonics, such as series-connected transformers, which are specially designed to equally share the total load power. In the present work, a single-phase 50/60 Hz input source is rectified via a semi-controlled bridge rectifier to control DC voltage levels and thereby regulate the output load voltage at a constant level. The DC-rectified voltage then supplies six single-phase quazi-square H-bridge inverters, each of which supplies the primary of a single-phase transformer. The secondaries of the six transformers are connected in series. Through off-line calculation, the switching angles of the six inverters and the turns ratios of the six transformers are designed to ensure equal power distribution for the transformers. The SHE technique is also employed to eliminate the higher-order harmonics of the output voltage. A digital implementation is carried out to determine the switching angles. Theoretical results are demonstrated, and a scaled-down experimental 600 VA prototype is built to verify the validity of the proposed system.

Study on the Fly-back Topology of New Power Feed-back Method for Active Cell Balancing (엑티브 셀 밸런싱을 위한 새로운 전력 피드백 방식의 플라이백 토폴로지에 관한 연구)

  • Seong-Yong Kang;Myeong-Jin Song;Seong-Mi Park;Sung-Jun Park;Jae-Ha Ko
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1083-1095
    • /
    • 2023
  • Recently, the demand for low-voltage, high-capacity ESS is rapidly increasing due to the revitalization of the e-mobility industry, which is mainly powered by electricity. In addition, the demand for portable power banks is rapidly increasing due to the revitalization of leisure industries such as camping and fishing. The ESS with this structure consists of a small number of series cells and many parallel cells, resulting in a system with a large rated current. Therefore, the number of power devices for cell balancing configured in series is small, but a balancing device with a large current capacity is required. Construction of a constant temperature device in such a low-voltage, high-current ESS is difficult due to economic issues. The demand for an active balancing system that can solve the passive balancing heating problem is rapidly increasing. In this paper, propose a power feedback fly-back topology that can solve the balancing heating problem. The characteristic of the proposed topology is that a series-connected voltage sharing voltage is used as the input of the flyback converter, and the converter output is connected to one transformer. In this structure, the converter output for cell voltage balancing shares magnetic flux through one high-frequency transformer, so the cell voltage connected to the converter automatically converges to the same voltage.

Circuital Characteristics of Ideal Three-phase Transformer Connections (이상적인 3상 변압기 결선의 회로 특성)

  • Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.9-12
    • /
    • 2008
  • Mathematical singularities of circuit equations with three-phase ideal transformer connections are studied. Three-wired wye-wye connections, delta-delta connections, and primary four-wired wye-delta connections are singular. The matrices of their circuit equations have zeros in their eigenvalues. Three-wired wye-delta connections, wye-wye-delta connections, and primary four-wired wye-wye connections are not singular. The physical meaning of their singularities is that they are sensitive and prone to be ill-conditioned. Equivalent shunt admittances representing ion losses and magnetizing inductances make the singular matrices non-singular in wye-connected circuits. And, equivalent series impedances representing copper losses and leakage inductances make the singular matrices non-singular in delta-connected circuits. The tableau analysis is used for the study.

  • PDF