• Title/Summary/Keyword: Series resistance

Search Result 1,021, Processing Time 0.037 seconds

Effect of Screw Geometries on Pull-out Characteristics of Screw Anchor Piles Using Reduced Scale Model Tests (스크류 제원이 스크류 앵커 파일의 인발저항 특성에 미치는 영향에 관한 축소모형실험)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.5-15
    • /
    • 2012
  • This paper presents the results of an investigation into the pull-out characteristics of screw anchor piles for use in braced excavation and cut-slope. A series of reduced-scale model tests were performed on model screw anchor piles with different geometric characteristics such as screw size and pitch length. The results indicated that the pullout resistance increases with decreasing the pitch length for a given screw size. It was also observed that the pullout capacity of a screw anchor pile increases with the screw size up to a certain size beyond which the increase becomes minimal. The results are presented in such a way that the pullout characteristics of screw piles with different screw geometric characteristics can be identified. Practical implications of the findings are discussed.

Development of High Erosion Resistant Fe-based Alloy for Continuous Hot Dipping Line (연속용융 도금라인 용 고내침식 Fe계 합금 개발)

  • Baek, Min-Sook;Kim, Yong-Cheol;Baek, Kyeong-Cheol;Kwak, Joon-Seop;Yoon, Dong-Joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.95-103
    • /
    • 2020
  • In this study, the material used in the hot dip galvanizing equipment was poorly corrosion-resistant, so it was performed to solve the cost and time problems caused by equipment replacement. The theoretical calculation was performed using the DV-Xα method(Discrete Variational Local-density approximation method). The alloy (STS4XX series) of the equipment currently used has a martensite phase. Therefore, the theoretical calculation was performed by applying P4 / mmm, which is a tetragonal structure. The new alloy was chosen by designing theoretical values close to existing materials. Considering elements that contribute to corrosion, most have high prices. Therefore, the design was completed by adjusting the content using only the components of the reference material in the theoretical design. The final design alloys were chosen as D6 and D9. Designed D6 and D9 were dissolved and prepared using an induction furnace. After the heat treatment process was completed, the corrosion rate of the alloys was confirmed by using the potentiodynamic polarization test. The surface of the prepared alloys were processed horizontally and then polished to # 1200 using sand paper to perform potentiodynamic polarization test. Domestic products: 4.735 mpy (mils / year), D6: 0.9166 mpy, D9: 0.3372 mpy, alloys designed than domestic products had a lower corrosion rate. Therefore, the designed alloy was expected to have better erosion resistance.

Comparison of Lateral Pile Behavior under Static and Dynamic Loading by Centrifuge Tests (원심모형 실험을 이용한 지반-말뚝 상호작용의 정적 및 동적 거동 평가)

  • Yoo, Min-Taek;Kwon, Sun-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.51-58
    • /
    • 2018
  • In this study a series of centrifuge tests were carried out in dry sand to analyze the comparison of lateral pile behavior for static loading and dynamic loading condition. In case of static loading condition, the lateral displacement was applied up to 50% of pile diameter by deflection control method. And the input sine wave of 0.1 g~0.4 g amplitude and 1 Hz frequency was applied at the base of the soil box using shaking table for dynamic loading condition. From comparison of experimental static p-y curve obtained from static loading tests with API p-y curves, API p-y curves can predict well within 20% error the ultimate subgrade reaction force of static loading condition. The ultimate subgrade reaction force of experimental dynamic p-y curve is 5 times larger than that of API p-y curves and experimental static p-y curves. Therefore, pseudo-static analysis applied to existing p-y curve for seismic design could greatly underestimate the soil resistance at non-linear domain and cause overly conservative design.

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs

  • Choi, Sihyuk;Kim, Guntae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.265-270
    • /
    • 2014
  • Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.

A Study on the Generating Characteristics Depending on Driving System of a Honeycomb Shaped Piezoelectric Energy Harvester (벌집형 압전 발전 소자의 구동방식에 따른 출력 특성)

  • Jeong, Seong-Su;Kang, Shin-Chul;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, energy harvesting technology is increasing due to the fossil fuel shortages. Energy harvesting is generating electrical energy from wasted energies as sunlight, wind, waves, pressure, and vibration etc. Energy harvesting is one of the alternatives of fossil fuel. One of the energy harvesting technologies, the piezoelectric energy harvesting has been actively studied. Piezoelectric generating uses a positive piezoelectric effect which produces electrical energy when mechanical vibration is applied to the piezoelectric device. Piezoelectric energy harvesting has an advantage in that it is relatively not affected by weather, area and place. Also, stable and sustainable energy generation is possible. However, the output power is relatively low, so in this paper, newly designed honeycomb shaped piezoelectric energy harvesting device for increasing a generating efficiency. The output characteristics of the piezoelectric harvesting device were analyzed according to the change of parameters by using the finite element method analysis program. One model which has high output voltage was selected and a prototype of the honeycomb shaped piezoelectric harvesting device was fabricated. Experimental results from the fabricated device were compared to the analyzed results. After the AC-DC converting, the power of one honeycomb shaped piezoelectric energy harvesting device was measured 2.3[mW] at road resistance 5.1[$K{\Omega}$]. And output power was increased the number of harvesting device when piezoelectric energy harvesting device were connected in series and parallel.

Indium Tin Oxide Based Reflector for Vertical UV LEDs (자외선 수직형 LED 제작을 위한 Indium Tin Oxide 기반 반사전극)

  • Jung, Ki-Chang;Lee, Inwoo;Jeong, Tak;Baek, Jong Hyeob;Ha, Jun-Seok
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2013
  • In this paper, we studied a p-type reflector based on indium tin oxide (ITO) for vertical-type ultraviolet light-emitting diodes (UV LEDs). We investigated the reflectance properties with different deposition methods. An ITO layer with a thickness of 50 nm was deposited by two different methods, sputtering and e-beam evaporation. From the measurement of the optical reflection, we obtained 70% reflectance at a wavelength of 382 nm by means of sputtering, while only 30% reflectance resulted when using the e-beam evaporation method. Also, the light output power of a $1mm{\times}1mm$ vertical chip created with the sputtering method recorded a twofold increase over a chip created with e-beam evaporation method. From the measurement of the root mean square (RMS), we obtained a RMS value 1.3 nm for the ITO layer using the sputtering method, while this value was 5.6 nm for the ITO layer when using the e-beam evaporation method. These decreases in the reflectance and light output power when using the e-beam evaporation method are thought to stem from the rough surface morphology of the ITO layer, which leads to diffused reflection and the absorption of light. However, the turn-on voltage and operation voltage of the two samples showed identical results of 2.42 V and 3.5 V, respectively. Given these results, we conclude that the two ITO layers created by different deposition methods showed no differences in the electric properties of the ohmic contact and series resistance.

Effect of Self-Assembled Monolayer Treated ZnO on the Photovoltaic Properties of Inverted Polymer Solar Cells

  • Yoo, Seong Il;Do, Thu Trang;Ha, Ye Eun;Jo, Mi Young;Park, Juyun;Kang, Yong-Cheol;Kim, Joo Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.569-574
    • /
    • 2014
  • Inverted bulk hetero-junction polymer solar cells (iPSC) composed of P3HT/PC61BM blends on the ZnO modified with benzoic acid derivatives-based self-assembled monolayers (SAM) are fabricated. Compared with the device using the pristine ZnO, the devices with ZnO surface modified SAMs derived from benzoic acid such as 4-(diphenylamino)benzoic acid (DPA-BA) and 4-(9H-carbazol-9-yl)benzoic acid (Cz-BA) as an electron transporting layer show improved the performances. It is mainly attributed to the favorable interface dipole at the interface between ZnO and the active layer, the eective passivation of the ZnO surface traps, decrease of the work function and facilitating transport of electron from PCBM to ITO electrode. The power conversion eciency (PCE) of iPSCs based on DPA-BA and Cz-BA treated ZnO reaches 2.78 and 2.88%, respectively, while the PCE of the device based on untreated ZnO is 2.49%. The open circuit voltage values ($V_{oc}$) of the devices with bare ZnO and SAM treated ZnO are not much different. Whereas, higher the fill factor (FF) and lower the series resistance ($R_s$) are obtained in the devices with SAMs modification.

Testing Investigation of Protective Coatings for Downhole Oil Tube

  • Zhang, Liping;Zhang, Qibin;Zhang, Yanjun;Xie, Beibei;Zhang, Yingying
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-15
    • /
    • 2008
  • Aiming at the corrosion circumstances and corrosion prevention needs of downhole oil tubes, series protective coatings for downhole oil tubes have been developed in the authors' laboratory, including a baked type coating YG-01 and an air curing type coating YG-03, etc. The performance investigation of the coatings has been done for testing their corrosion resistance, mainly including salt fog test, immersion test in oil-field waste water and various acid solutions, high temperature and high pressure test in alkali solution or $H_2S/CO_2$ environment, as well as some other performances. The investigation results show that oil tube anti-corrosion coatings developed here can endure over 4000 hrs salt fog test, over 1000 hrs immersion in various acid solutions at room temperature and in boiling oil-field waste water. In addition, the coatings can keep intact after experiencing test in alkali solution under 70 MPa pressure at $150^{\circ}C$ for 24 hrs, and in simulative sour gas environment under the total pressure of 32 MPa ($P_{H_{2}S}=3.2MPa$, $P_{CO_{2}}=3.2MPa$) at $90^{\circ}C$ for 168 hrs, which show that the coatings can be used for corrosion prevention in downhole environments with specific high temperature and high pressure, such as sour gas wells. The other testing results show the oil tube protective coatings have excellent comprehensive performance.

An Electrochemical Method to Predict Corrosion Rates in Soils

  • Dafter, M.R
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.217-225
    • /
    • 2016
  • Linear polarization resistance (LPR) testing of soils has been used extensively by a number of water utilities across Australia for many years now to determine the condition of buried ferrous water mains. The LPR test itself is a relatively simple, inexpensive test that serves as a substitute for actual exhumation and physical inspection of buried water mains to determine corrosion losses. LPR testing results (and the corresponding pit depth estimates) in combination with proprietary pipe failure algorithms can provideauseful predictive tool in determiningthe current and future conditions of an asset. Anumber of LPR tests have been developed on soil by various researchers over the years1), but few have gained widespread commercial use, partly due to the difficulty in replicating the results. This author developed an electrochemical cell that was suitable for LPR soil testing and utilized this cell to test a series of soil samples obtained through an extensive program of field exhumations. The objective of this testing was to examine the relationship between short-term electrochemical testing and long-term in-situ corrosion of buried water mains, utilizing an LPR test that could be robustly replicated. Forty-one soil samples and related corrosion data were obtained from ad hoc condition assessments of buried water mains located throughout the Hunter region of New South Wales, Australia. Each sample was subjected to the electrochemical test developed by the author, and the resulting polarization data were compared with long-term pitting data obtained from each water main. The results of this testing program enabled the author to undertake a comprehensive review of the LPR technique as it is applied to soils and to examine whether correlations can be made between LPR testing results and long-term field corrosion.

A Study on Heat Transfer Characteristics of a Closed Two-Phase Thermosyphon with a Low Tilt Angle (낮은 경사각을 갖는 밀폐형 2상 열사이폰의 열전달 특성에 관한 연구)

  • 김철주;강환국;김윤철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • In lots of application to heat exchanger systems, closed two-phase thermosyphons are tilted from a horizontal. If the tilt angle, especially, is less than 30$^{\circ}$, the operational performances of thermosyphon are highly dependent on tilt angle. The present study was conducted to better understand such operational behaviors as mech-anni는 of phase change, and flow patterns inside a tilted thermosyphon. For experiment, an ethanol thermosyphon with a 35% of fill charge rate was designed and manufactured, using a copper tube with a diameter 19mm and a length 1500mm. Through a series of test, the tilt angle was kept constant at each of 4 different values in the range 10~25deg. and the heat supply to the evaporator was stepwisely increased up to 30㎾/$m^2$. When a steady state was established to the thermosyphon for each step of thermal loads, the wall temperature distribution and vapor temperature at the condenser were measured. The wall temperature distributions demonstrated a formation of dry patch in the top end zone of the evaporator, with a values of temperature 20~4$0^{\circ}C$ higher than the wetted surface for a moderate heat flux q≒20㎾/$m^2$. Inspite of the presence of hot dry patch, however, the mean values of boiling heat transfer coefficient at the evaporator wall were still in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times higher than the predicted values obtained from Nusselt's film condensation theory on tilted plate. Using those two expressions, a correlation was formulated as a function of heat flux and tilt angle, to determine the total thermal resistance of a tilted thermosyphon. The correlation formula showed a good agreement with the experimental data within 20%.

  • PDF