• Title/Summary/Keyword: Series reactor

Search Result 257, Processing Time 0.026 seconds

Flow Induced Vibration of Reactor Internals Structure : Analysis and Experiment (원자로 내부구조물의 유체흐름에 의한 진동 - 해석 및 실험)

  • Rhee, Hui-Nam;Choi, Suhn;Kim, Tae-Hyung;Hwang, Jong-Keun;Kim, Jung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.201-207
    • /
    • 1995
  • A series of vibration assessment programs has been performed for Yonggwang Nuclear Power Plant Unit 4 (YGN 4) in order to verify the structural integrity of the reactor internals for flow induced vibration prior to its commercial operation. The structural analysis was done to provide the basis for measurement and the theoretical evidence for the structural integrity of the reactor internals. The actual flow induced hydraulic loads and reactor internals vibration response data were measured and recorded during pre-core hot functional testing of the plant. Then, the measured data have been reduced and analyzed, and compared with the analysis results such as the frequency contents, stresses, strains and displacements. It is concluded that the structural analysis methodology performed for vibration response of the reactor internals due to the flow induced vibration is appropriately conservative, and also that the structural integrity of YGN 4 reactor internals to flow induced vibration is acceptable for long term operation.

  • PDF

Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform

  • Kim, Kyung Mo;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.776-792
    • /
    • 2021
  • Conventional integral effect test facilities were constructed to enable the precise observation of thermal-hydraulic phenomena and reactor behaviors under postulated accident conditions to prove reactor safety. Although these facilities improved the understanding of thermal-hydraulic phenomena and reactor safety, applications of new technologies and their performance tests have been limited owing to the cost and large scale of the facilities. Various nuclear technologies converging 4th industrial revolution technologies such as artificial intelligence, drone, and 3D printing, are being developed to improve plant management strategies. Additionally, new conceptual passive safety systems are being developed to enhance reactor safety. A new integral effect test facility having a noticeable scaling ratio, i.e., the (UNIST reactor innovation loop (URI-LO), is designed and constructed to improve the technical quality of these technologies by performance and feasibility tests. In particular, the URI-LO, which is constructed using a transparent material, enables better visualization and provides physical insights on multidimensional phenomena inside the reactor system. The facility design based on three-level approach is qualitatively validated with preliminary analyses, and its functionality as a test facility is confirmed through a series of experiments. The design feature, design validation, functionality test, and future utilization of the URI-LO are introduced.

Preliminary conceptual design of a small high-flux multi-purpose LBE cooled fast reactor

  • Xiong, Yangbin;Duan, Chengjie;Zeng, Qin;Ding, Peng;Song, Juqing;Zhou, Junjie;Xu, Jinggang;Yang, Jingchen;Li, Zhifeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3085-3094
    • /
    • 2022
  • The design concept of a Small High-flux Multipurpose LBE(Lead Bismuth Eutectic) cooled Fast Reactor (SHMLFR) was proposed in the paper. The primary cooling system of the reactor is forced circulation, and the fuel element form is arc-plate loaded high enrichment MOX fuel. The core is cylindrical with a flux trap set in the center of the core, which can be used as an irradiation channel. According to the requirements of the core physical design, a series of physical design criteria and constraints were given, and the steady and transient parameters of the reactor were calculated and analyzed. Regarding the thermal and hydraulic phenomena of the reactor, a simplified model was used to conduct a preliminary analysis of the fuel plates at special positions, and the temperature field distribution of the fuel plate with the highest power density under different coolant flow rates was simulated. The results show that the various parameters of SHMLFR meet the requirements and design criteria of the physical design of the core and the thermal design of the reactor. This implies that the conceptual design of SHMLFR is feasible.

Experimental Investigation on Bi-directional Guidance Control Between an Underwater Mobile Robot and Laser Pointer (레이저 위치 지시기와 이동 로봇간의 상호유도제어의 실험적 고찰)

  • 이재철;김재희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.268-268
    • /
    • 2000
  • In the inspection of the reactor pressure vessel using an underwater mobile robot, we developed a new bi-directional guidance control scheme between an underwater mobile robot and a laser pointer. We imposed fanning to the inclinometer embedded in the mobile robot to improve its transient response, and used heuristic control scheme to reduce accidents when the laser pointer losts the mobile robot. We implemented these algorithms to our reactor vessel inspect ion system and performed a series of experiments.

  • PDF

Comparative studies for the performance of a natural gas steam reforming in a membrane reactor (분리막 반응기를 이용한 천연가스 개질반응의 성능에 관한 비교 분석)

  • Lee, Boreum;Lim, Hankwon
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.95-101
    • /
    • 2016
  • For a natural gas steam reforming, comparative studies of the performance in a conventional packed-bed reactor and a membrane reactor, a new conceptual reactor consisting of a reactor with series of hydrogen separation membranes, have been performed. Based on experimental kinetics reported by Xu and Froment, a process simulation model was developed with Aspen $HYSYS^{(R)}$, a commercial process simulator, and effects of various operating conditions like temperature, $H_2$ permeance, and Ar sweep gas flow rate on the performance in a membrane reactor were investigated in terms of reactant conversion and $H_2$ yield enhancement showing improved $H_2$ yield and methane conversion in a membrane reactor. In addition, a preliminary cost estimation focusing on natural gas consumption to supply heat required for the system was carried out and feasibility of possible cost savings in a membrane reactor was assessed with a cost saving of 10.94% in a membrane reactor.

Anaerobic/oxic Treatment of Slurry-type Swine Waste

  • Won, Chul-Hee;Rim, Jay-Myoung
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.203-209
    • /
    • 2008
  • This paper presents the experimental results in five months operation from a combined anaerobic/oxic system treating swine waste with average concentrations in organic matter and nitrogen of 7,930 mgCOD/L and 671 mgTKN/L, respectively. The system was formed using an upflow anaerobic sludge blanket (UASB) reactor and oxic reactor connected in series with a recycling line of oxic effluents to UASB for its denitrification. The UASB reactor was operated at an organic volumetric loading rate (VLR) of $2.1{\sim}4.5\;kgTCOD/m^3$/day and the removal efficiency of TCOD was $66.3{\sim}85.4%$. The overall removal efficiency of TCOD was more than 99%. The oxic reactor was operated at a nitrogen VLR of $0.10{\sim}0.20\;kgTKN/m^3$/day and the nitrification efficiency was 75%. However, the complete denitrification was observed in the UASB reactor that was due to the optimal temperature and sufficient carbon source. The overall removal rate of TN was about 80%. About 76.2% of the influent COD mass was accountable in a COD mass balance at a level of VLR $3.64\;kgCOD/m^3$/day. The production rate of methane was $0.32\;LCH_4/gCOD_{removed}$ when influent organics, VLR, were recorded by $3.4{\sim}4.5\;kgCOD/m^3$/day.

Scoping Analysis of MCCI (Molten Core Concrete Interaction) at Plant Scale Using CORQUENCH Code (CORQUENCH 코드를 사용한 실규모 원자로의 노심용융물과 콘크리트 상호반응 해석)

  • Kim, Hwan-Yeol;Park, Jong-Hwa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.268-271
    • /
    • 2008
  • If a reactor vessel is failed to retain a molten corium in a postulated severe accident, the molten corium is released outside the reactor vessel into a reactor cavity. The molten corium would attack the concrete wall and basemat of the reactor cavity, which may lead to inevitable concrete decompositions and possible radiological releases. In the OECD/MCCI project, a series of tests were performed to secure the data for cooling the molten corium spread out at the reactor cavity and for the long-term CCI (Core Concrete Interaction). Also, a MCCI (Molten Core Concrete Interaction) analysis code, CORQUENCH was upgraded at Argonne National Laboratory with embedding the new models developed for the tests. This paper deals with analyses of MCCI at plant scale under the conditions of top flooding using the upgraded CORQUENCH code. The modeling approach is briefly summarized first, followed by presentation of a validation calculation that illustrates the predicative capability of the modeling tool. With this background in place, the model is then used to carry out a parametric set of scoping calculations that define approximate coolability envelopes for the LCS (Limestone Common Sand) concrete that has been evaluated in the OECD/MCCI project.

  • PDF

Characteristics of the magnetic flux-offset type FCL by switching component

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.18-20
    • /
    • 2016
  • The study of superconducting fault current limiter (SFCL) is continuously being studied as a countermeasure for reducing fault-current in the power system. When the fault occurred in the power system, the fault-current was limited by the generated impedance of SFCLs. The operational characteristics of the flux-offset type SFCL according to turn ratios between the primary and the secondary winding of a reactor were compared in this study. We connected the secondary core to a superconductor and a SCR switch in series in the suggested structure. The fault current in the primary and the secondary winding of the reactor and the voltage of the superconductor on the secondary were measured and compared. The results showed that the fault current in the load line was the lowest and the voltage applied at both ends of the superconductor was also low when the secondary winding of the reactor had lower turn ratio than the primary. It was confirmed based on these results that the turn ratio of the secondary winding of the reactor must be designed to be lower than that of the primary winding to reduce the burden of the superconductor and to lower the fault current. Also, the suggested structure could increase the duration of the limited current by limiting the continuous current after the first half cycle from the fault with the fault current limiter.

Characteristics of Superconducting Elements in Series-Connected Three-Phase Flux-Lock type SFCL (3상 자속구속형 한류기의 초전도 소자 직렬연결 특성분석)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Hwang, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04b
    • /
    • pp.35-36
    • /
    • 2007
  • We investigated the characteristics of three phase flux-lock type SFCL. Three phase flux-lock type consists of three reactor wound on an iron core in each single phase and the secondary coil is connected to the superconducting elements in series. the superconducting elements with serial connection were quenched simultangously in the single line-to-ground fault.

  • PDF

Single-phase Resonant Inverter using SiC Power Modules for a Compact High-Voltage Capacitive Coupled Plasma Power Supply

  • Tu, Vo Nguyen Qui;Choi, Hyunchul;Kim, Youngwoo;Lee, Changhee;Yoo, Hyoyol
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.85-86
    • /
    • 2014
  • The paper presents a power supply of atmospheric-pressure plasma reactor based on SiC (Silicon Carbide) MOSFET resonant inverter. Thanks to the capacitive characteristic of capacitive coupling plasma reactor type, the LC series resonant inverter had been applied to take advantages of this topology with the implementation of SiC MOSFET power modules as switching power devices. Designation of gate driver for SiC MOSFET had been introduced by this paper. The 5kVp, 5kW power supply had also been verified by experimental results.

  • PDF