• Title/Summary/Keyword: Series Elastic Actuator

Search Result 8, Processing Time 0.024 seconds

Variable Stiffness Series Elastic Actuator Design for Active Suspension (능동형 현가장치를 위한 가변 강성 직렬 탄성 액추에이터 설계)

  • Bang, Jinuk;Choi, Minsik;Lee, Donghyung;Park, Jungho;Park, Eunjae;Lee, Geunil;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • In this study, we developed an FSEA(Force-sensing Series Elastic Actuator) composed of a spring and an actuator has been developed to compensate for external disturbance forced. The FSEA has a simple structure in which the spring and the actuator are connected in series, and the external force can be easily measured through the displacement of the spring. And the characteristic of the spring absorbs the shock to the small disturbance and increases the sense of stability. It is designed and constructed to control the stiffness of such springs more flexibly according to the situation. The conventional FSEA uses a fixed stiffness spring and the actuator is not compensated properly when it receives large or small external force. Through this experiment, it is confirmed that FSEA compensates the external force through the proposed algorithm that the variable stiffness compensates well for large and small external forces.

Development of Joint Controller and Collision Detection Methods for Series Elastic Manipulator of Relief Robot (구호로봇용 연성 매니퓰레이터를 위한 조인트 제어 및 충돌감지 알고리즘)

  • Jung, Byung-jin;Kim, Tae-Keun;Won, Geon;Kim, Dong Sup;Hwang, Junghun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2018
  • This paper deals with the development and application of control algorithms for series elastic relief robots for rescue operations in harsh environment like disasters or battlefield. The joint controller applied in this paper has a cascade structure combining inner loop for torque control and outer loop for position control. The torque loop contains feedforward and feedback controller and disturbance observer for independent, decentralized joint control. The effect of the elastic component and motor dynamics are treated as the nonlinear disturbance and compensated with the disturbance observer of torque controller. For the collision detection, Band Designed Disturbance Observer is configured to recognize/respond to external disturbance robustly in the continuously changing environment. The controller is applied to a 7-dof series elastic manipulator to evaluate the torque tracking and collision detection/response performance.

Force Control of Robot Fingers using Series Elastic Actuators (직렬 탄성 액츄에이터 기반의 로봇 손가락의 힘 제어)

  • Lee, Seung-Yup;Kim, Byeong-Sang;Song, Jae-Bok;Chae, Soo-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.964-969
    • /
    • 2012
  • Robot hands capable of grasping or handling various objects are important for service robots to effectively aid humans. In particular, controlling a contact force and providing a compliant motion are essential when the hand is in contact with objects. Many dexterous robot hands equipped with force/torque sensors have been developed to perform force control, but they suffer from the complexity of control and high cost. In this paper, a low-cost robot hand based on SEA (Series Elastic Actuator), which is composed of compression spring, stretch sensor, and wire, is proposed. The grasping force can be estimated by measuring the compression length of spring, which would allow the hand to perform force control. A series of experimentations are carried out to verify the performance of force control of the proposed robot hand, and it is shown that it can successfully control the contact force without any additional force/torque sensors.

Safety Improvement in the Curvature Motion of a High Speed Segway (고속 세그웨이의 곡선 운동에서의 안정성 향상)

  • Kim, Jihyeon;Bang, Jinuk;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.139-146
    • /
    • 2020
  • In this paper, the slope of the footplate is adjusted to compensate for the centrifugal force with a series elastic actuator (SEA) attached to the Segway's body to improve the cornering characteristics during turning. To ensure Segway's driving safety in the curvature motion, it is necessary to compensate for the centripetal force by tilting the footplate to generate inward force from gravity. When the footplate is tilted under the control of SEA, the vertical load on both wheels has been changed accordingly. The frictional force of the wheel has been changed by the change of the vertical force, which requires adjustment of driving torque to keep the curvature trajectory. That is, the driving torque has been controlled to keep the curvature trajectory considering the frictional force caused by the turning motion. Four SEAs are attached to the footplate to control the slope of the footplate and the real curvature motion has been demonstrated to verify the effects of SEAs in the high- speed curvature motion.

A Study on Vibration Control of a Beam Using Magnetostrictive Actuators (자기변형 구동기를 이용한 보의 진동제어)

  • 임채욱;문석준;정태영;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.433-438
    • /
    • 2003
  • In this paper we explore the effectiveness of a magnetostrictive actuator(MSA) as a structural control device. A series of numerical and experimental tests are carried out with a simple aluminum beam only supported at each end by the actuator. After the equation of motion of the controlled system is obtained by the finite element method, a model reduction is performed to reduce the numbers of degree of freedom. A linear quadratic feedback controller is realized on a real-time digital control system to damp the first four elastic modes of the beam. Through some tests, we confirmed the possibility of this actuator for controlling beam-like structures.

  • PDF

Electromechanical analysis of 2-2 cement-based piezoelectric transducers in series electrically

  • Wang, Jianjun;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.267-284
    • /
    • 2014
  • This paper aims to present the analytical solutions of 2-2 cement based piezoelectric transducers in series electrically based on the theory of piezo-elastic dynamics. The solutions of two different kinds of 2-2 cement based piezoelectric transducers under external harmonic load are obtained by using the displacement method. The effects of electrical connection of piezoelectric layers, loading frequency, thickness and distance of piezoelectric layers on the characteristics of the transducers are discussed. Comparisons with other related experimental investigations are also given, and good agreement is found. The proposed 2-2 cement based piezoelectric transducers have a great potential application in monitoring structural health in civil engineering and capturing mechanical energy or monitoring train-running safety in railway system and traffic safety in road system.

A study on the control of robotic manipulators with flexibility (탄성을 고려한 로보트 매니플레이터의 제어에 관한 연구)

  • Lee, Si-Bok;Jo, Hyeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.2
    • /
    • pp.23-32
    • /
    • 1988
  • A control system for improving the moving accuracy of robotic manipulators with elastic joints is devloped. The dynamics of manipulator system is splitted into two sub-dynamics; of arm-link and actuator rotor- link, which are coupled statically through joint torque. Two contorl loops are implemented respectively around both sub-dynamic systems. Computed torque algorithm with acceleration feedback is used for the arm-link control loop, and for the actuator rotor-link control loop PID algorithm is adopted. The resulting control system is tested through a series of computer simulation for a PUMA type manipulator, The reaults show good performance of the developed control system for wide range of joint stiffness and moving speed.

  • PDF