• Title/Summary/Keyword: Sequential features selection (SFS)

Search Result 11, Processing Time 0.02 seconds

Development of Interactive Feature Selection Algorithm(IFS) for Emotion Recognition

  • Yang, Hyun-Chang;Kim, Ho-Duck;Park, Chang-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.282-287
    • /
    • 2006
  • This paper presents an original feature selection method for Emotion Recognition which includes many original elements. Feature selection has some merits regarding pattern recognition performance. Thus, we developed a method called thee 'Interactive Feature Selection' and the results (selected features) of the IFS were applied to an emotion recognition system (ERS), which was also implemented in this research. The innovative feature selection method was based on a Reinforcement Learning Algorithm and since it required responses from human users, it was denoted an 'Interactive Feature Selection'. By performing an IFS, we were able to obtain three top features and apply them to the ERS. Comparing those results from a random selection and Sequential Forward Selection (SFS) and Genetic Algorithm Feature Selection (GAFS), we verified that the top three features were better than the randomly selected feature set.

Automated Classification of Audio Genre using Sequential Forward Selection Method

  • Lee Jong Hak;Yoon Won lung;Lee Kang Kyu;Park Kyu Sik
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.768-771
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital signal processing approach. From the 20 second query audio file, 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS (Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we verify the superior performance of the SFS method that provides near $90{\%}$ success rate for the genre classification which means $10{\%}$-$20{\%}$ improvements over the previous methods

  • PDF

Multi-biomarkers-Base Alzheimer's Disease Classification

  • Khatri, Uttam;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.233-242
    • /
    • 2021
  • Various anatomical MRI imaging biomarkers for Alzheimer's Disease (AD) identification have been recognized so far. Cortical and subcortical volume, hippocampal, amygdala volume, and genetics patterns have been utilized successfully to diagnose AD patients from healthy. These fundamental sMRI bio-measures have been utilized frequently and independently. The entire possibility of anatomical MRI imaging measures for AD diagnosis might thus still to analyze fully. Thus, in this paper, we merge different structural MRI imaging biomarkers to intensify diagnostic classification and analysis of Alzheimer's. For 54 clinically pronounce Alzheimer's patients, 58 cognitively healthy controls, and 99 Mild Cognitive Impairment (MCI); we calculated 1. Cortical and subcortical features, 2. The hippocampal subfield, amygdala nuclei volume using Freesurfer (6.0.0) and 3. Genetics (APoE ε4) biomarkers were obtained from the ADNI database. These three measures were first applied separately and then combined to predict the AD. After feature combination, we utilize the sequential feature selection [SFS (wrapper)] method to select the top-ranked features vectors and feed them into the Multi-Kernel SVM for classification. This diagnostic classification algorithm yields 94.33% of accuracy, 95.40% of sensitivity, 96.50% of specificity with 94.30% of AUC for AD/HC; for AD/MCI propose method obtained 85.58% of accuracy, 95.73% of sensitivity, and 87.30% of specificity along with 91.48% of AUC. Similarly, for HC/MCI, we obtained 89.77% of accuracy, 96.15% of sensitivity, and 87.35% of specificity with 92.55% of AUC. We also presented the performance comparison of the proposed method with KNN classifiers.

Classification of TV Program Scenes Based on Audio Information

  • Lee, Kang-Kyu;Yoon, Won-Jung;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3E
    • /
    • pp.91-97
    • /
    • 2004
  • In this paper, we propose a classification system of TV program scenes based on audio information. The system classifies the video scene into six categories of commercials, basketball games, football games, news reports, weather forecasts and music videos. Two type of audio feature set are extracted from each audio frame-timbral features and coefficient domain features which result in 58-dimensional feature vector. In order to reduce the computational complexity of the system, 58-dimensional feature set is further optimized to yield l0-dimensional features through Sequential Forward Selection (SFS) method. This down-sized feature set is finally used to train and classify the given TV program scenes using κ -NN, Gaussian pattern matching algorithm. The classification result of 91.6% reported here shows the promising performance of the video scene classification based on the audio information. Finally, the system stability problem corresponding to different query length is investigated.

A Study on the Signal Processing for Content-Based Audio Genre Classification (내용기반 오디오 장르 분류를 위한 신호 처리 연구)

  • 윤원중;이강규;박규식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.271-278
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

A Study on Robust Speech Emotion Feature Extraction Under the Mobile Communication Environment (이동통신 환경에서 강인한 음성 감성특징 추출에 대한 연구)

  • Cho Youn-Ho;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.269-276
    • /
    • 2006
  • In this paper, we propose an emotion recognition system that can discriminate human emotional state into neutral or anger from the speech captured by a cellular-phone in real time. In general. the speech through the mobile network contains environment noise and network noise, thus it can causes serious System performance degradation due to the distortion in emotional features of the query speech. In order to minimize the effect of these noise and so improve the system performance, we adopt a simple MA (Moving Average) filter which has relatively simple structure and low computational complexity, to alleviate the distortion in the emotional feature vector. Then a SFS (Sequential Forward Selection) feature optimization method is implemented to further improve and stabilize the system performance. Two pattern recognition method such as k-NN and SVM is compared for emotional state classification. The experimental results indicate that the proposed method provides very stable and successful emotional classification performance such as 86.5%. so that it will be very useful in application areas such as customer call-center.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

A Study on the Efficient Feature Vector Extraction for Music Information Retrieval System (음악 정보검색 시스템을 위한 효율적인 특징 벡터 추출에 관한 연구)

  • 윤원중;이강규;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.532-539
    • /
    • 2004
  • In this Paper, we propose a content-based music information retrieval (MIR) system base on the query-by-example (QBE) method. The proposed system is implemented to retrieve queried music from a dataset where 60 music samples were collected for each of the four genres in Classical, Hiphop. Jazz. and Reck. resulting in 240 music files in database. From each query music signal, the system extracts 60 dimensional feature vectors including spectral centroid. rolloff. flux base on STFT and also the LPC. MFCC and Beat information. and retrieves queried music from a trained database set using Euclidean distance measure. In order to choose optimum features from the 60 dimension feature vectors, SFS method is applied to draw 10 dimension optimum features and these are used for the Proposed system. From the experimental result. we can verify the superior performance of the proposed system that provides success rate of 84% in Hit Rate and 0.63 in MRR which means near 10% improvements over the previous methods. Additional experiments regarding system Performance to random query Patterns (or portions) and query lengths have been investigated and a serious instability problem of system Performance is Pointed out.

A Study on The Improvement of Emotion Recognition by Gender Discrimination (성별 구분을 통한 음성 감성인식 성능 향상에 대한 연구)

  • Cho, Youn-Ho;Park, Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.107-114
    • /
    • 2008
  • In this paper, we constructed a speech emotion recognition system that classifies four emotions - neutral, happy, sad, and anger from speech based on male/female gender discrimination. At first, the proposed system distinguish between male and female from a queried speech, then the system performance can be improved by using separate optimized feature vectors for each gender for the emotion classification. As a emotion feature vector, this paper adopts ZCPA(Zero Crossings with Peak Amplitudes) which is well known for its noise-robustic characteristic from the speech recognition area and the features are optimized using SFS method. For a pattern classification of emotion, k-NN and SVM classifiers are compared experimentally. From the computer simulation results, the proposed system was proven to be highly efficient for speech emotion classification about 85.3% regarding four emotion states. This might promise the use the proposed system in various applications such as call-center, humanoid robots, ubiquitous, and etc.