• Title/Summary/Keyword: Sequential estimation

Search Result 246, Processing Time 0.025 seconds

위성궤도의 추정기법에 관한 연구

  • 최철환;조겸래;박수홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.65-70
    • /
    • 1989
  • Lately, at an epock of a full-scale satellite launching plan of Korea, T.T.C(Tracking, Telemetery & Command) is a indispensable part. In this paper, particular attention is given to orbit determination problem of the role of T.T.C. A near-earth satellite is modeled, batch and extended sequential estimation algorithm (ESEA) are compared using range data. As a result, ESEA show effectiveness.

  • PDF

Minimum Entropy Deconvolution을 이용한 지하수 상대 재충진양의 시계열 추정법

  • 김태희;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.574-578
    • /
    • 2003
  • There are so many methods to estimate the groundwater recharge. These methods can be categorized into four groups. First groupis related to the water balance analysis, second group is concerned with baseflow/springflow recession, and third group is interested in some types of tracers; environmental tracers and/or temperature profile. The limitation of these types of methods is that the estimated results of recharge are presented in the form of an average over some time period. Forth group has a little different approach. They use the time series data of hydraulic head and specific yield evaluated from field test, and the results of estimation are described in the sequential form. But their approach has a serious problem. The estimated results in forth typeof methods are generally underestimated because they cannot consider the discharge phase of water table fluctuation coupled with the recharge phase. Ketchum el. at. (2000) proposed calibrated method, considering recharge- and discharge-coupled water table fluctuation. But the dischargeis considered just as the areal average with discharge rate. On the other hand, there are many methods to estimate the source wavelet with observed data set in geophysics/signal processing and geophysical methods are rarely applied to the estimation of groundwater recharge. The purpose this study is the evaluation of the applicability of one of the geophysical method in the estimation of sequential recharge rate. The applied geophysical method is called minimum entropy deconvolution (MED). For this purpose, numerical modeling with linearized Boussinesq equation was applied. Using the synthesized hydraulic head through the numerical modeling, the relative sequenceof recharge is calculated inversely. Estimated results are very concordant with the applied recharge sequence. Cross-correlations between applied recharge sequence and the estimated results are above 0.985 in all study cases. Through the numerical test, the availability of MED in the estimation of the recharge sequence to groundwater was investigated

  • PDF

Weighted Distance-Based Quantization for Distributed Estimation

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.215-220
    • /
    • 2014
  • We consider quantization optimized for distributed estimation, where a set of sensors at different sites collect measurements on the parameter of interest, quantize them, and transmit the quantized data to a fusion node, which then estimates the parameter. Here, we propose an iterative quantizer design algorithm with a weighted distance rule that allows us to reduce a system-wide metric such as the estimation error by constructing quantization partitions with their optimal weights. We show that the search for the weights, the most expensive computational step in the algorithm, can be conducted in a sequential manner without deviating from convergence, leading to a significant reduction in design complexity. Our experments demonstrate that the proposed algorithm achieves improved performance over traditional quantizer designs. The benefit of the proposed technique is further illustrated by the experiments providing similar estimation performance with much lower complexity as compared to the recently published novel algorithms.

State Estimation and Identification of Nonlinear Systems by Hermitian Expansion of Probability Distributions (Hermite전개법에 의한 비선형계의 상태추정 및 동정에 관한 연구)

  • Kyong Ki Kim
    • 전기의세계
    • /
    • v.22 no.3
    • /
    • pp.49-62
    • /
    • 1973
  • An algorithm for the state estimation and identification of multivariable nonlinear systems with noisy nonlinear observation has been investigated on the basis of the multidimensional Hermitian expansion for the a posteriori probability densities of the predicted observation, the predicted state and the observation conditioned by the state. A new approach for construction of this sequential nonlinear estimator, retaining up to the second order term of the observation error, has been developed, along with the approximation of nonlinear system functions, truncating at the second term. The estimation of the unknown parameters has been established by extending the state estimation technique, regarding the parameters as another state variables. The results of investigation indicate the feasibility of the schemes presented in this paper.

  • PDF

Substructure based structural damage detection with limited input and output measurements

  • Lei, Y.;Liu, C.;Jiang, Y.Q.;Mao, Y.K.
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.619-640
    • /
    • 2013
  • It is highly desirable to explore efficient algorithms for detecting structural damage of large size structural systems with limited input and output measurements. In this paper, a new structural damage detection algorithm based on substructure approach is proposed for large size structural systems with limited input and output measurements. Inter-connection effect between adjacent substructures is treated as 'additional unknown inputs' to substructures. Extended state vector of each substructure and its unknown excitations are estimated by sequential extended Kalman estimator and least-squares estimation, respectively. It is shown that the 'additional unknown inputs' can be estimated by the algorithm without the measurements on the substructure interface DOFs, which is superior to previous substructural identification approaches. Also, structural parameters and unknown excitation are estimated in a sequential manner, which simplifies the identification problem compared with other existing work. Structural damage can be detected from the degradation of the identified substructural element stiffness values. The performances of the proposed algorithm are demonstrated by several numerical examples and a lab experiment. Measurement noise effect is considered. Both the simulation results and experimental data validate that the proposed algorithm is viable for structural damage detection of large size structural systems with limited input and output measurements.

Estimation of Sea Surface Current Vector based on Satellite Ocean Color Image around the Korean Marginal Sea

  • Kim, Eung;Ro, Young-Jae;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.816-819
    • /
    • 2006
  • One of the most difficult parameters to measure in the sea is current speed and direction. Recently, efforts are being made to estimate the ocean current vectors by utilizing sequential satellite imageries. In this study, we attempted to estimated sea surface current vector (sscv) by using satellite ocean color imageries of SeaWifs around the Korean Peninsula. This ocean color image data has 1-day sampling interval and spatial resolution of 1x1 km. Maximum cross-correlation method is employed which is aimed to detect similar patterns between sequential images. The estimated current vectors are compared to the surface geostrophic current vectors obtained from altimeter of sea level height data. In utilizing the color imagery data, some limitations and drawbacks exist so that in warm water region where phytoplankton concentration is relatively lower than in cold water region, estimation of sscv is poor and unreliable. On the other hand, two current vector fields agree reasonably well in the Korean South Sea region where high concentration of chlorophyll-a and weak tide is observed. In the future, with ocean color images of shorter sampling interval by COMS satellite, the algorithm and methodology developed in the study would be useful in providing the information for the ocean current around Korean Peninsula.

  • PDF

Estimation of Person Height and 3D Location using Stereo Tracking System (스테레오 추적 시스템을 이용한 보행자 높이 및 3차원 위치 추정 기법)

  • Ko, Jung Hwan;Ahn, Sung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • In this paper, an estimation of person height and 3D location of a moving person by using the pan/tilt-embedded stereo tracking system is suggested and implemented. In the proposed system, face coordinates of a target person is detected from the sequential input stereo image pairs by using the YCbCr color model and phase-type correlation methods and then, using this data as well as the geometric information of the stereo tracking system, distance to the target from the stereo camera and 3-dimensional location information of a target person are extracted. Basing on these extracted data the pan/tilt system embedded in the stereo camera is controlled to adaptively track a moving person and as a result, moving trajectory of a target person can be obtained. From some experiments using 780 frames of the sequential stereo image pairs, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.5, 0.42 for 780 frames on average, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. These good experimental results suggest a possibility of implementation of a new stereo target tracking system having a high degree of accuracy and a very fast response time with this proposed algorithm.

RASE Acquisition Algorithm of Ultra Wideband System for Car Positioning and Traffic Light Control (차량 위치추적기반 교통신호등 제어용 UWB 시스템의 Acquisition 알고리즘 연구)

  • Hwang, In-Kwan;Park, Yun-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.992-998
    • /
    • 2005
  • In this paper, An Ultra Fast Acquisition Algorithm of low transmission rate ultra-wideband(UWB) systems for car positioning and traffic light controling is proposed. Since the acquisition algorithms for CDMA system are not fast enough to access the low transmission rate UWB systems, the new ultra fast acquisition scheme which can be implemented with low cost and simplified circuit is required. The proposed algorithm adopted the Recurrent Sequential Estimation scheme and trinomial M-sequence. Therefore, The proposed scheme can reduce the average acquisition time in $1\~3{\mu}sec$ with simple circuit, even for the UWB systems which use long pseudo-noise(PN) sequence and transmit low power below the FCC EIRP emission limits. The simulation results for the average acquisition time of the proposed scheme are compared with the ones of the existing acquisition schemes.

An Industrial Case Study of the ARM926EJ-S Power Modeling

  • Kim, Hyun-Suk;Kim, Seok-Hoon;Lee, Ik-Hwan;Yoo, Sung-Joo;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.221-228
    • /
    • 2005
  • In this work, our goal is to develop a fast and accurate power model of the ARM926EJ-S processor in the industrial design environment. Compared with existing work on processor power modeling which focuses on the power states of processor core, our model mostly focuses on the cache power model. It gives more than 93% accuracy and 1600 times speedup compared with post-layout gate-level power estimation. We also address two practical issues in applying the processor power model to the real design environment. One is to incorporate the power model into an existing commercial instruction set simulator. The other is the re-characterization of power model parameters to cope with different gate-level netlists of the processor obtained from different design teams and different fabrication technology.

Low-Power Frequency Offset Synchronization Block Design and Implementation using Pipeline CORDIC (Pipeline CORDIC을 이용한 저전력 주파수 옵셋 동기화기 설계 및 구현)

  • Ha, Jun-Hyung;Jung, Yo-Sung;Cho, Yong-Hoon;Jang, Young-Beom
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, a low-power frequency offset synchronization structure using CORDIC algorithm is proposed. Main blocks of frequency offset synchronization are estimation and compensation block. In the proposed frequency offset estimation block, implementation area is reduced by using sequential CORDIC, and throughput is accelerated by using 2 step CORDIC. In the proposed frequency offset compensation block, pipeline CORDIC is utilized for area reduction and high speed processing. Through MatLab simulation, function for proposed structure is verified. Proposed frequency offset synchronization structure is implemented by Verilog-HDL coding and implementation area is estimated by Synopsys logic synthesis tool.