• Title/Summary/Keyword: Sequential clustering

Search Result 89, Processing Time 0.019 seconds

A Fusion of Data Mining Techniques for Predicting Movement of Mobile Users

  • Duong, Thuy Van T.;Tran, Dinh Que
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.568-581
    • /
    • 2015
  • Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.

Regional Grouping of Transmission System Using the Sequential Clustering Technique (순차적 클러스터링기법을 이용한 송전 계통의 지역별 그룹핑)

  • Kim, Hyun-Houng;Lee, Woo-Nam;Park, Jong-Bae;Shin, Joong-Rin;Kim, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.911-917
    • /
    • 2009
  • This paper introduces a sequential clustering technique as a tool for an effective grouping of transmission systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the similarity measures of regional information with the similarity measures of location price, and introduce the techniques of the clustering method. This transmission usage rate uses power flow based on congestion costs and similarity measurements using the FCM(Fuzzy C-Mean) algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS and Korea power system.

Image Retrieval Using Sequential Clustering and Projection Information (순차영역분할과 투영정보를 이용한 영상검색)

  • Won Hyuk-Joon;Kim Tae-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.7
    • /
    • pp.906-915
    • /
    • 2005
  • In this paper we propose content based image retrieval method using sequential clustering and projection information. Proposed method uses the mean of color in clustered color regions by sequential clustering and the projection information in each clustered color regions, which combines spatial information with color information in images efficiently. The experimental results showed that the proposed method retrieval efficiency improved 11.6 percent over conventional methods. In addition, the proposed method robustly tolerates large changes in appearance and shape caused by changes in viewing positions, camera zooms, etc.

  • PDF

Regional Grouping of the interconnected network system through Sequential Clustering (순차적 클러스터링을 이용한 지역별 그룹핑)

  • Kim, Hyun-Hong;Song, Hyoung-Yong;Kim, Jin-Ho;Park, Jong-Bae;Shin, Jung-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.252-254
    • /
    • 2007
  • This paper introduces the method of sequential clustering as a tool for the effective clustering of mass unit electrical systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the results of similarity measures for regional information with similarity measures for regional price, and introduce the technicalities of the clustering method. This transmission usage rate used power flow based on congestion costs and modified similarity measurements using the FCM algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS.

  • PDF

Menu-based Clustering for Restaurant Recommendation Websites using Sequential Information Bottleneck (Sequential Information Bottleneck을 이용한 음식점 추천 웹사이트를 위한 메뉴 기반 클러스터링)

  • Yoon, Du-Mim;Do, Hae-Yong;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.423-428
    • /
    • 2010
  • 최근에는 사회구조가 복잡해 짐에 따라 각 분야의 전문성이 두드러지고 있다. 이러한 흐름은 음식점에도 영향을 주어 기존의 형식에서 벗어난 자신들만의 독특하고 차별성 있는 요리 메뉴의 개발을 가속화시켰다. 그로 인해 한식, 중식, 양식으로 구분하는 전통적인 음식점 분류 방식이 한계를 보였고, 기존의 분류를 포함하면서도 새로이 등장하는 음식점들을 다룰 수 있는 방식이 필요하다. 본 논문에서는 최근 폭발적으로 늘어나는 음식점 추천 웹 사이트의 데이터를 토대로 자동적으로 음식점 분류를 수행하는 방법을 제안한다. 본 연구에서는 각 음식점이 갖고 있는 특징을 메뉴 정보를 통해 파악하려 하였다. 음식점 사이트에서 수집한 2 천개의 음식점, 6 만개의 메뉴 정보를 미리 정의된 필터로 정제한 후 Sequential Information Bottleneck Clustering 알고리즘을 적용하여 구분해 보았다. 실험결과 제안한 방법이 다른 Clustering 방법에 비해 높은 성능을 보였으며 음식점주가 수동적으로 음식점 분류를 입력하는 수고를 줄일 수 있는 가능성을 보였다.

  • PDF

A Study on Partial Pattern Estimation for Sequential Agglomerative Hierarchical Nested Model (SAHN 모델의 부분적 패턴 추정 방법에 대한 연구)

  • Jang, Kyung-Won;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.143-145
    • /
    • 2005
  • In this paper, an empirical study result on pattern estimation method is devoted to reveal underlying data patterns with a relatively reduced computational cost. Presented method performs crisp type clustering with given n number of data samples by means of the sequential agglomerative hierarchical nested model (SAHN). Conventional SAHN based clustering requires large computation time in the initial step of algorithm. To deal with this concern, we modified overall process with a partial approach. In the beginning of this method, we divide given data set to several sub groups with uniform sampling and then each divided sub data group is applied to SAHN based method. The advantage of this method reduces computation time of original process and gives similar results. Proposed is applied to several test data set and simulation result with conceptual analysis is presented.

  • PDF

Modified Sequential Algorithm schema for Efficient Digital Image retrieval (Modified Sequential Algorithmic Schema를 이용한 디지털 사진의 효율적인 분류)

  • Lee, Sang-Lyn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.237-240
    • /
    • 2007
  • 이 논문에서는 수정된 Sequential Algorithmic Schema를 이용해서 여러 장소를 이동하면서 찍은 디지털 이미지를 효율적으로 분류할 수 있는 방법을 제안한다. 제안하는 방법은 이웃 패턴들과 특징 정보의 연속성, 유사성을 가지며 들어오는 입력 패턴에 대해 기존의 모든 군집과 유사도를 비교하는 방법이 아니라 이전 군집의 정보와 유사도를 비교하여 군집에 포함시키거나 동적으로 군집을 생성하는 효율적인 군집화 방법이다. 제안한 방법은 실험을 통해서 기존의 군집화 기법에 성능 및 속도의 효율성을 증명하였다.

  • PDF

New Sequential Clustering Combination for Rule Generation System (규칙 생성 시스템을 위한 새로운 연속 클러스터링 조합)

  • Kim, Sung Suk;Choi, Ho Jin
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2012
  • In this paper, we propose a new clustering combination based on numerical data driven for rule generation mechanism. In large and complicated space, a clustering method can obtain limited performance results. To overcome the single clustering method problem, hybrid combined methods can solve problem to divided simple cluster estimation. Fundamental structure of the proposed method is combined by mountain clustering and modified Chen clustering to extract detail cluster information in complicated data distribution of non-parametric space. It has automatic rule generation ability with advanced density based operation when intelligent systems including neural networks and fuzzy inference systems can be generated by clustering results. Also, results of the mechanism will be served to information of decision support system to infer the useful knowledge. It can extend to healthcare and medical decision support system to help experts or specialists. We show and explain the usefulness of the proposed method using simulation and results.

A sequential outlier detecting method using a clustering algorithm (군집 알고리즘을 이용한 순차적 이상치 탐지법)

  • Seo, Han Son;Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.699-706
    • /
    • 2016
  • Outlier detection methods without performing a test often do not succeed in detecting multiple outliers because they are structurally vulnerable to a masking effect or a swamping effect. This paper considers testing procedures supplemented to a clustering-based method of identifying the group with a minority of the observations as outliers. One of general steps is performing a variety of t-test on individual outlier-candidates. This paper proposes a sequential procedure for searching for outliers by changing cutoff values on a cluster tree and performing a test on a set of outlier-candidates. The proposed method is illustrated and compared to existing methods by an example and Monte Carlo studies.

XML Document Clustering Based on Sequential Pattern (순차패턴에 기반한 XML 문서 클러스터링)

  • Hwang, Jeong-Hee;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1093-1102
    • /
    • 2003
  • As the use of internet is growing, the amount of information is increasing rapidly and XML that is a standard of the web data has the property of flexibility of data representation. Therefore electronic document systems based on web, such as EDMS (Electronic Document Management System), ebXML (e-business extensible Markup Language), have been adopting XML as the method for exchange and standard of documents. So research on the method which can manage and search structural XML documents in an effective wav is required. In this paper we propose the clustering method based on structural similarity among the many XML documents, using typical structures extracted from each document by sequential pattern mining in pre-clustering process. The proposed algorithm improves the accuracy of clustering by computing cost considering cluster cohesion and inter-cluster similarity.