• 제목/요약/키워드: Sequential clustering

검색결과 89건 처리시간 0.02초

A Fusion of Data Mining Techniques for Predicting Movement of Mobile Users

  • Duong, Thuy Van T.;Tran, Dinh Que
    • Journal of Communications and Networks
    • /
    • 제17권6호
    • /
    • pp.568-581
    • /
    • 2015
  • Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.

순차적 클러스터링기법을 이용한 송전 계통의 지역별 그룹핑 (Regional Grouping of Transmission System Using the Sequential Clustering Technique)

  • 김현홍;이우남;박종배;신중린;김진호
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.911-917
    • /
    • 2009
  • This paper introduces a sequential clustering technique as a tool for an effective grouping of transmission systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the similarity measures of regional information with the similarity measures of location price, and introduce the techniques of the clustering method. This transmission usage rate uses power flow based on congestion costs and similarity measurements using the FCM(Fuzzy C-Mean) algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS and Korea power system.

순차영역분할과 투영정보를 이용한 영상검색 (Image Retrieval Using Sequential Clustering and Projection Information)

  • 원혁준;김태선
    • 한국멀티미디어학회논문지
    • /
    • 제8권7호
    • /
    • pp.906-915
    • /
    • 2005
  • 본 논문에서는 영상검색 방법의 하나인 내용에 기반을 둔 검색방법으로 순차영역분할과 투영정보를 이용 한 영상검색 방법을 제안한다. 제안한 방법은 순차 분할된 영역의 색상평균값과 각 영역의 투영정보를 이용한 방법으로 영상의 공간정보와 컬러정보를 효과적으로 결합한 방법이다. 실험결과 제안한 방법이 기존의 방법 보다 검색효율이 $11.6\%$ 증가됨을 알 수 있었다. 또한 영상의 밝기변화, 회전, 카메라의 위치 및 확대, 축소에 따른 영상의 공간변화에도 매우 강인한 것으로 나타났다.

  • PDF

순차적 클러스터링을 이용한 지역별 그룹핑 (Regional Grouping of the interconnected network system through Sequential Clustering)

  • 김현홍;송형용;김진호;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.252-254
    • /
    • 2007
  • This paper introduces the method of sequential clustering as a tool for the effective clustering of mass unit electrical systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the results of similarity measures for regional information with similarity measures for regional price, and introduce the technicalities of the clustering method. This transmission usage rate used power flow based on congestion costs and modified similarity measurements using the FCM algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS.

  • PDF

Sequential Information Bottleneck을 이용한 음식점 추천 웹사이트를 위한 메뉴 기반 클러스터링 (Menu-based Clustering for Restaurant Recommendation Websites using Sequential Information Bottleneck)

  • 윤두밈;도해용;김경중
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.423-428
    • /
    • 2010
  • 최근에는 사회구조가 복잡해 짐에 따라 각 분야의 전문성이 두드러지고 있다. 이러한 흐름은 음식점에도 영향을 주어 기존의 형식에서 벗어난 자신들만의 독특하고 차별성 있는 요리 메뉴의 개발을 가속화시켰다. 그로 인해 한식, 중식, 양식으로 구분하는 전통적인 음식점 분류 방식이 한계를 보였고, 기존의 분류를 포함하면서도 새로이 등장하는 음식점들을 다룰 수 있는 방식이 필요하다. 본 논문에서는 최근 폭발적으로 늘어나는 음식점 추천 웹 사이트의 데이터를 토대로 자동적으로 음식점 분류를 수행하는 방법을 제안한다. 본 연구에서는 각 음식점이 갖고 있는 특징을 메뉴 정보를 통해 파악하려 하였다. 음식점 사이트에서 수집한 2 천개의 음식점, 6 만개의 메뉴 정보를 미리 정의된 필터로 정제한 후 Sequential Information Bottleneck Clustering 알고리즘을 적용하여 구분해 보았다. 실험결과 제안한 방법이 다른 Clustering 방법에 비해 높은 성능을 보였으며 음식점주가 수동적으로 음식점 분류를 입력하는 수고를 줄일 수 있는 가능성을 보였다.

  • PDF

SAHN 모델의 부분적 패턴 추정 방법에 대한 연구 (A Study on Partial Pattern Estimation for Sequential Agglomerative Hierarchical Nested Model)

  • 장경원;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.143-145
    • /
    • 2005
  • In this paper, an empirical study result on pattern estimation method is devoted to reveal underlying data patterns with a relatively reduced computational cost. Presented method performs crisp type clustering with given n number of data samples by means of the sequential agglomerative hierarchical nested model (SAHN). Conventional SAHN based clustering requires large computation time in the initial step of algorithm. To deal with this concern, we modified overall process with a partial approach. In the beginning of this method, we divide given data set to several sub groups with uniform sampling and then each divided sub data group is applied to SAHN based method. The advantage of this method reduces computation time of original process and gives similar results. Proposed is applied to several test data set and simulation result with conceptual analysis is presented.

  • PDF

Modified Sequential Algorithmic Schema를 이용한 디지털 사진의 효율적인 분류 (Modified Sequential Algorithm schema for Efficient Digital Image retrieval)

  • 이상린
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.237-240
    • /
    • 2007
  • 이 논문에서는 수정된 Sequential Algorithmic Schema를 이용해서 여러 장소를 이동하면서 찍은 디지털 이미지를 효율적으로 분류할 수 있는 방법을 제안한다. 제안하는 방법은 이웃 패턴들과 특징 정보의 연속성, 유사성을 가지며 들어오는 입력 패턴에 대해 기존의 모든 군집과 유사도를 비교하는 방법이 아니라 이전 군집의 정보와 유사도를 비교하여 군집에 포함시키거나 동적으로 군집을 생성하는 효율적인 군집화 방법이다. 제안한 방법은 실험을 통해서 기존의 군집화 기법에 성능 및 속도의 효율성을 증명하였다.

  • PDF

규칙 생성 시스템을 위한 새로운 연속 클러스터링 조합 (New Sequential Clustering Combination for Rule Generation System)

  • 김승석;최호진
    • 인터넷정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 논문에서는 수치적 데이터를 이용하여 규칙을 생성하는 시스템에 대해 순차적인 클러스터링 방법을 제안한다. 단일 클러스터링 기법은 방대하고 복잡한 공간 내에서는 원하는 결과를 얻지 못할 수 있다. 이런 문제점을 해결하기 위해 제안된 방법은 서로 다른 클러스터링 기법을 순차적으로 수행하여 장점들은 활용하고 단점들은 보안하는 형태를 제안하였다. Mountain 클러스터링과 Chen 클러스터링을 이용하여 non-parametric 공간에서 자율적으로 클러스터를 구성하였고, global 공간과 local 공간으로 역할을 분담하여 클러스터를 추정한다. 추정된 클러스터들은 신경회로망이나 퍼지 시스템과 같은 지능 시스템의 구조와 초기 파라미터 결정에 활용될 수 있으며, 확장하여 헬스케어와 의료 분야에서의 결정 제공 시스템의 학습에 도움을 줄 수 있다. 제안된 방법을 유용성을 시뮬레이션을 통해 보이고자 한다.

군집 알고리즘을 이용한 순차적 이상치 탐지법 (A sequential outlier detecting method using a clustering algorithm)

  • 서한손;윤민
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.699-706
    • /
    • 2016
  • 검정절차가 생략된 이상치 탐지법은 구조적으로 수렁효과나 가면효과에 취약하기 때문에 다수의 이상치를 제대로 탐지하지 못할 때가 있다. 본 연구에서는 군집화에 의하여 구분된 소수 관찰치군을 이상치로 판정하는 방법에 보완될 검정절차를 다룬다. 이에 관련된 일반적인 방법은 탐지된 이상치 후보군의 개별적인 관찰치에 대해 다양한 종류의 t-검정을 수행하는 것이다. 본 연구에서는 이상치 후보군에 대한 검정을 수행하고 군집나무의 절단기준을 변경시켜 새로운 이상치군을 탐색해 나가는 순차적인 방법을 제안한다. 예제와 모의실험을 통해 제시된 방법과 기존의 방법들을 비교한다.

순차패턴에 기반한 XML 문서 클러스터링 (XML Document Clustering Based on Sequential Pattern)

  • 황정희;류근호
    • 정보처리학회논문지D
    • /
    • 제10D권7호
    • /
    • pp.1093-1102
    • /
    • 2003
  • 인터넷의 사용 증가로 정보의 양은 기하급수적으로 증가하고 있으며 웹 데이터의 표준인 XML의 데이터 표현의 유연성으로 인해 EDMS(Electronic Document Management System), ebXML(e-business extensible Markup Language) 등 웹 기반의 전자문서론 이용하는 시스템들은 XML를 문서 교환 방식 및 표준 문서 형식으로 도입하고 있는 실정이다. 그러므로 점차 확산되어 가고 있는 XML 문서에 대한 효율적인 문서의 관리와 검색을 위한 연구가 필요하다. 이 논문에서는 다중 문서간의 구조적 유사성을 분류하기 위하여 엘리먼트의 순서적 의미를 갖는 XML 문서를 대상으로 순차패턴을 이용하여 문서의 특성을 반영하는 대표구조를 추출하고 추출된 구조를 기반으로 유사 구조 문서를 클러스터링하는 방법을 제시한다. 이 논문의 제안 알고리즘은 클러스터의 응집도와 클러스터간의 유사도를 함께 고려하는 비용계산 방식을 이용하므로써 클러스터링의 정확도를 높일 수 있는 효과를 얻을 수 있다.