Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.
This paper introduces a sequential clustering technique as a tool for an effective grouping of transmission systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the similarity measures of regional information with the similarity measures of location price, and introduce the techniques of the clustering method. This transmission usage rate uses power flow based on congestion costs and similarity measurements using the FCM(Fuzzy C-Mean) algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS and Korea power system.
본 논문에서는 영상검색 방법의 하나인 내용에 기반을 둔 검색방법으로 순차영역분할과 투영정보를 이용 한 영상검색 방법을 제안한다. 제안한 방법은 순차 분할된 영역의 색상평균값과 각 영역의 투영정보를 이용한 방법으로 영상의 공간정보와 컬러정보를 효과적으로 결합한 방법이다. 실험결과 제안한 방법이 기존의 방법 보다 검색효율이 $11.6\%$ 증가됨을 알 수 있었다. 또한 영상의 밝기변화, 회전, 카메라의 위치 및 확대, 축소에 따른 영상의 공간변화에도 매우 강인한 것으로 나타났다.
This paper introduces the method of sequential clustering as a tool for the effective clustering of mass unit electrical systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the results of similarity measures for regional information with similarity measures for regional price, and introduce the technicalities of the clustering method. This transmission usage rate used power flow based on congestion costs and modified similarity measurements using the FCM algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS.
최근에는 사회구조가 복잡해 짐에 따라 각 분야의 전문성이 두드러지고 있다. 이러한 흐름은 음식점에도 영향을 주어 기존의 형식에서 벗어난 자신들만의 독특하고 차별성 있는 요리 메뉴의 개발을 가속화시켰다. 그로 인해 한식, 중식, 양식으로 구분하는 전통적인 음식점 분류 방식이 한계를 보였고, 기존의 분류를 포함하면서도 새로이 등장하는 음식점들을 다룰 수 있는 방식이 필요하다. 본 논문에서는 최근 폭발적으로 늘어나는 음식점 추천 웹 사이트의 데이터를 토대로 자동적으로 음식점 분류를 수행하는 방법을 제안한다. 본 연구에서는 각 음식점이 갖고 있는 특징을 메뉴 정보를 통해 파악하려 하였다. 음식점 사이트에서 수집한 2 천개의 음식점, 6 만개의 메뉴 정보를 미리 정의된 필터로 정제한 후 Sequential Information Bottleneck Clustering 알고리즘을 적용하여 구분해 보았다. 실험결과 제안한 방법이 다른 Clustering 방법에 비해 높은 성능을 보였으며 음식점주가 수동적으로 음식점 분류를 입력하는 수고를 줄일 수 있는 가능성을 보였다.
In this paper, an empirical study result on pattern estimation method is devoted to reveal underlying data patterns with a relatively reduced computational cost. Presented method performs crisp type clustering with given n number of data samples by means of the sequential agglomerative hierarchical nested model (SAHN). Conventional SAHN based clustering requires large computation time in the initial step of algorithm. To deal with this concern, we modified overall process with a partial approach. In the beginning of this method, we divide given data set to several sub groups with uniform sampling and then each divided sub data group is applied to SAHN based method. The advantage of this method reduces computation time of original process and gives similar results. Proposed is applied to several test data set and simulation result with conceptual analysis is presented.
이 논문에서는 수정된 Sequential Algorithmic Schema를 이용해서 여러 장소를 이동하면서 찍은 디지털 이미지를 효율적으로 분류할 수 있는 방법을 제안한다. 제안하는 방법은 이웃 패턴들과 특징 정보의 연속성, 유사성을 가지며 들어오는 입력 패턴에 대해 기존의 모든 군집과 유사도를 비교하는 방법이 아니라 이전 군집의 정보와 유사도를 비교하여 군집에 포함시키거나 동적으로 군집을 생성하는 효율적인 군집화 방법이다. 제안한 방법은 실험을 통해서 기존의 군집화 기법에 성능 및 속도의 효율성을 증명하였다.
본 논문에서는 수치적 데이터를 이용하여 규칙을 생성하는 시스템에 대해 순차적인 클러스터링 방법을 제안한다. 단일 클러스터링 기법은 방대하고 복잡한 공간 내에서는 원하는 결과를 얻지 못할 수 있다. 이런 문제점을 해결하기 위해 제안된 방법은 서로 다른 클러스터링 기법을 순차적으로 수행하여 장점들은 활용하고 단점들은 보안하는 형태를 제안하였다. Mountain 클러스터링과 Chen 클러스터링을 이용하여 non-parametric 공간에서 자율적으로 클러스터를 구성하였고, global 공간과 local 공간으로 역할을 분담하여 클러스터를 추정한다. 추정된 클러스터들은 신경회로망이나 퍼지 시스템과 같은 지능 시스템의 구조와 초기 파라미터 결정에 활용될 수 있으며, 확장하여 헬스케어와 의료 분야에서의 결정 제공 시스템의 학습에 도움을 줄 수 있다. 제안된 방법을 유용성을 시뮬레이션을 통해 보이고자 한다.
검정절차가 생략된 이상치 탐지법은 구조적으로 수렁효과나 가면효과에 취약하기 때문에 다수의 이상치를 제대로 탐지하지 못할 때가 있다. 본 연구에서는 군집화에 의하여 구분된 소수 관찰치군을 이상치로 판정하는 방법에 보완될 검정절차를 다룬다. 이에 관련된 일반적인 방법은 탐지된 이상치 후보군의 개별적인 관찰치에 대해 다양한 종류의 t-검정을 수행하는 것이다. 본 연구에서는 이상치 후보군에 대한 검정을 수행하고 군집나무의 절단기준을 변경시켜 새로운 이상치군을 탐색해 나가는 순차적인 방법을 제안한다. 예제와 모의실험을 통해 제시된 방법과 기존의 방법들을 비교한다.
인터넷의 사용 증가로 정보의 양은 기하급수적으로 증가하고 있으며 웹 데이터의 표준인 XML의 데이터 표현의 유연성으로 인해 EDMS(Electronic Document Management System), ebXML(e-business extensible Markup Language) 등 웹 기반의 전자문서론 이용하는 시스템들은 XML를 문서 교환 방식 및 표준 문서 형식으로 도입하고 있는 실정이다. 그러므로 점차 확산되어 가고 있는 XML 문서에 대한 효율적인 문서의 관리와 검색을 위한 연구가 필요하다. 이 논문에서는 다중 문서간의 구조적 유사성을 분류하기 위하여 엘리먼트의 순서적 의미를 갖는 XML 문서를 대상으로 순차패턴을 이용하여 문서의 특성을 반영하는 대표구조를 추출하고 추출된 구조를 기반으로 유사 구조 문서를 클러스터링하는 방법을 제시한다. 이 논문의 제안 알고리즘은 클러스터의 응집도와 클러스터간의 유사도를 함께 고려하는 비용계산 방식을 이용하므로써 클러스터링의 정확도를 높일 수 있는 효과를 얻을 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.