• Title/Summary/Keyword: Sequential Optimization

Search Result 442, Processing Time 0.024 seconds

Low Temperature Processed Transparent Conductive Thin Films Based on Sol-Gel ZnO / Ag Nanowire (저온 형성 가능한 "졸겔 ZnO / 은 나노선" 복합 투명전도막)

  • Shin, Won-Jung;Kim, Bo Seok;Moon, Chan-Su;Cho, Won-Ki;Baik, Seung Jae
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.110-114
    • /
    • 2014
  • We propose a low temperature sol-gel ZnO/Ag nanowire composite thin film to fulfill low temperature and low cost requirements, which are essential criteria in future flexible electronic devices. In this proposed thin film, Ag nanowire plays the role of electrical conduction, and sol-gel ZnO provides a structural medium with a high visible transmittance. Low temperature restriction in the sol-gel fabrication process prevents sufficient oxidation of Zn acetate precursors, which were solved by a post-coating treatment with ultraviolet light irradiation. Composite thin film formation was performed by spin coating methods with a mixed precursor solution or in a sequential manner. We obtained an average visible transmittance larger than 85% and a sheet resistance smaller than $50{\Omega}/sq$. After optimization in a fabricated composite transparent conductive thin film with the thickness around 100 nm. Similar experimental demonstration in a flexible substrate (polyethyleneterephthalate) was successful, which implies a promising application opportunity of this technology.

Development of FK506-hyperproducing strain and optimization of culture conditions in solid-state fermentation for the hyper-production of FK506

  • Mo, SangJoon;Yang, Hyeong Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.289-298
    • /
    • 2016
  • FK506 hyper-yielding mutant, called the TCM8594 strain, was made from Streptomyces tsukubaensis NRRL 18488 by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, and FK506 sequential resistance selection. FK506 production by the TCM8594 strain improved 45.1-fold ($505.4{\mu}g/mL$) compared to that of S. tsukubaensis NRRL 18488 ($11.2{\mu}g/mL$). Among the five substrates, wheat bran was selected as the best solid substrate to produce optimum quantities of FK506 ($382.7{\mu}g/g$ substrate) under solid-state fermentation, and the process parameters affecting FK506 production were optimized. Maximum FK506 yield ($897.4{\mu}g/g$ substrate) was achieved by optimizing process parameters, such as wheat bran with 5 % (w/w) dextrin and yeast extract as additional nutrients, 70 % (v/w) initial solid substrate moisture content, initial medium pH of 7.2, $30^{\circ}C$ incubation temperature, inoculum level that was 10 % (v/w) of the cell mass equivalent, and a 10 day incubation. The results showed an overall 234 % increase in FK506 production after optimizing the process parameters.

Evaluation of the different genetic algorithm parameters and operators for the finite element model updating problem

  • Erdogan, Yildirim Serhat;Bakir, Pelin Gundes
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.541-569
    • /
    • 2013
  • There is a wide variety of existing Genetic Algorithms (GA) operators and parameters in the literature. However, there is no unique technique that shows the best performance for different classes of optimization problems. Hence, the evaluation of these operators and parameters, which influence the effectiveness of the search process, must be carried out on a problem basis. This paper presents a comparison for the influence of GA operators and parameters on the performance of the damage identification problem using the finite element model updating method (FEMU). The damage is defined as reduction in bending rigidity of the finite elements of a reinforced concrete beam. A certain damage scenario is adopted and identified using different GA operators by minimizing the differences between experimental and analytical modal parameters. In this study, different selection, crossover and mutation operators are compared with each other based on the reliability, accuracy and efficiency criteria. The exploration and exploitation capabilities of different operators are evaluated. Also a comparison is carried out for the parallel and sequential GAs with different population sizes and the effect of the multiple use of some crossover operators is investigated. The results show that the roulettewheel selection technique together with real valued encoding gives the best results. It is also apparent that the Non-uniform Mutation as well as Parent Centric Normal Crossover can be confidently used in the damage identification problem. Nevertheless the parallel GAs increases both computation speed and the efficiency of the method.

Automotive Body Design (차량 차체 설계)

  • Lee, Jeong-Ick;Kim, Byoun-Gon;Chung, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

Read-only Transaction Processing in Wireless Data Broadcast Environments (무선 데이타 방송 환경에서 읽기-전용 트랜잭션 처리 기법)

  • Lee, Sang-Geun;Kim, Seong-Seok;Hwang, Jong-Seon
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.404-415
    • /
    • 2002
  • In this paper, we address the issue of ensuring consistency of multiple data items requested in a certain order by read-only transactions in a wireless data broadcast environment. To handle the inherent property in a data broadcast environment that data can only be accessed strictly sequential by users, we explore a predeclaration-based query optimization and devise two practical transaction processing methods in the context of local caching. We also evaluate the performance of the proposed methods by an analytical study Evaluation results show that the predeclaration technique we introduce reduces response time significantly and adapts to dynamic changes in workload.

Fast Cooperative Sensing with Low Overhead in Cognitive Radios

  • Dai, Zeyang;Liu, Jian;Li, Yunji;Long, Keping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.58-73
    • /
    • 2014
  • As is well known, cooperative sensing can significantly improve the sensing accuracy as compared to local sensing in cognitive radio networks (CRNs). However, a large number of cooperative secondary users (SUs) reporting their local detection results to the fusion center (FC) would cause much overhead, such as sensing delay and energy consumption. In this paper, we propose a fast cooperative sensing scheme, called double threshold fusion (DTF), to reduce the sensing overhead while satisfying a given sensing accuracy requirement. In DTF, FC respectively compares the number of successfully received local decisions and that of failed receptions with two different thresholds to make a final decision in each reporting sub-slot during a sensing process, where cooperative SUs sequentially report their local decisions in a selective fashion to reduce the reporting overhead. By jointly considering sequential detection and selective reporting techniques in DTF, the overhead of cooperative sensing can be significantly reduced. Besides, we study the performance optimization problems with different objectives for DTF and develop three optimum fusion rules accordingly. Simulation results reveal that DTF shows evident performance gains over an existing scheme.

Ultra- and Nano-Filtration Process Optimization of Isoflavones and Oligosaccharides from Sunmul

  • Kim, Woo-Jung;Kim, Hak-Hyun;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.380-386
    • /
    • 2005
  • Optimal conditions of ultrafiltration (UF) and nanofiltration (NF) were investigated for separation and concentration of isoflavones and oligosaccharides from Sunmul. Levels of COD, BOD, and suspended solids (SS) in UF and NF permeates were also determined to evaluate effectiveness of these processes for reducing water pollution. Optimal UF operation conditions to achieve minimal fouling and maximal flux were $33-34^{\circ}C$ operating temperature and 2.3-2.4 bar trans-membrane pressure. Recovery yields of isoflavones and oligosaccharides in UF retentate were 11.49-28.16% and 12.77-27.57%, respectively. Increase in volumetric concentration factor (VCF) resulted in more functional compounds of isoflavones and oligosaccharides passing through UF membrane. Total isoflavone and oligosaccharide yields decreased by 3% as VCF increased from 6.0 to 8.0 and from 8.0 to 10.0, while decreased significantly by 10% as VCF decreased from 4.0 to 6.0. Optimal NF operating conditions were 192-195 psig operating pressure at $30-33^{\circ}C$. Total yields of isoflavones and oligosaccharides significantly decreased at VCF 8.0, whereas did not decrease up to VCF 6.0 during NF operation. Therefore, VCF 6.0 was recommended for economical process. COD and BOD decreased by more than 98% after NF process, and SS were not detected after UF process. These results indicated sequential filtration process was useful for separation of isoflavones and oligosaccharides from Sunmul and for reducing water contaminants.

Prediction of Jamming Techniques by Using LSTM (LSTM을 이용한 재밍 기법 예측)

  • Lee, Gyeong-Hoon;Jo, Jeil;Park, Cheong Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.278-286
    • /
    • 2019
  • Conventional methods for selecting jamming techniques in electronic warfare are based on libraries in which a list of jamming techniques for radar signals is recorded. However, the choice of jamming techniques by the library is limited when modified signals are received. In this paper, we propose a method to predict the jamming technique for radar signals by using deep learning methods. Long short-term memory(LSTM) is a deep running method which is effective for learning the time dependent relationship in sequential data. In order to determine the optimal LSTM model structure for jamming technique prediction, we test the learning parameter values that should be selected, such as the number of LSTM layers, the number of fully-connected layers, optimization methods, the size of the mini batch, and dropout ratio. Experimental results demonstrate the competent performance of the LSTM model in predicting the jamming technique for radar signals.

A Tandem Water and Hexane Washing Method for Economical Recovery of Paclitaxel from Biomass (바이오매스 유래 파클리탁셀의 경제적인 회수를 위한 물과 헥산의 순차적 세척 방법)

  • Lee, Myeong-Gi;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.169-174
    • /
    • 2022
  • In this study, a tandem water and hexane washing process was developed to improve the recovery efficiency of paclitaxel derived from Taxus chinensis. The polar impurities contained in the sample were effectively removed by washing with water at a sample/water ratio of 1:40 (w/v) for 10 min. In addition, the non-polar impurities were effectively removed by washing with hexane at a sample/hexane ratio of 1:160 (w/v) for 20 min. A high purity of paclitaxel (>30.0%) was obtained in a short operating time (~30 min) by sequential washing with water and hexane.

A Methodology of Optimal Design for Solar Heating and Cooling System Using Simulation Tool

  • Lee, Dongkyu;Nam, Hyunmin;Lee, Byoungdoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.540-543
    • /
    • 2015
  • Solar energy is one of the most important alternative energy sources which have been shown to meet high levels of heating and cooling demands in buildings. However, the efficiencies to satisfy these demands using solar energy significantly vary based on the characteristics of individual building. Therefore, this paper is focused on developing the methodology which can help to design optimal solar system for heating and cooling to be in cooperated within the existing buildings according to their load profiles. This research has established the Solar Heating and Cooling (SHC) system which is composed of collectors, absorption chiller, boiler and heat storage tank. Each component of SHC system is analyzed and made by means of Modelica Language and Pistache tool is verified the results. Sequential approximate optimization (SAO) and meta-models determined to 15 design parameters to optimize SHC system. Finally, total coefficient of performance (COP) of the entire SHC system is improved approximately 7.3% points compared to total COP of the base model of the SHC system.

  • PDF