• 제목/요약/키워드: Sequential Learning Method

검색결과 94건 처리시간 0.025초

다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템 (Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm)

  • 염홍기;주종태;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.20-26
    • /
    • 2008
  • 지능형 로봇이나 컴퓨터가 일상생활 속에서 차지하는 비중이 점점 높아짐에 따라 인간과의 상호교류도 점점 중요시되고 있다. 이렇게 지능형 로봇(컴퓨터) - 인간의 상호 교류하는데 있어서 감정 인식 및 표현은 필수라 할 수 있겠다. 본 논문에서는 음성 신호와 얼굴 영상에서 감정적인 특징들을 추출한 후 이것을 Bayesian Learning과 Principal Component Analysis에 적용하여 5가지 감정(평활, 기쁨, 슬픔, 화남, 놀람)으로 패턴을 분류하였다. 그리고 각각 매개체의 단점을 보완하고 인식률을 높이기 위해서 결정 융합 방법과 특징 융합 방법을 적용하여 감정 인식 실험을 하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 인식 실험을 하였으며, 특징 융합 방법은 SFS(Sequential Forward Selection) 특징 선택 방법을 통해 우수한 특징들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 인식 실험을 실행하였다. 그리고 인식된 결과 값을 2D 얼굴 형태에 적용하여 감정을 표현하였다.

Evolution of multiple agent system from basic action to intelligent behavior

  • Sugisaka, Masanori;Wang, Xiapshu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.190-194
    • /
    • 1998
  • In this paper, we introduce the micro robot soccer playing system as a standard test bench for the study on the multiple agent system. Our method is based on following viewpoints. They are (1) any complex behavior such as cooperation among agents must be completed by sequential basic actions of concerned agents. (2) those basic actions can be well defined, but (3) how to organize those actions in current time point so as to result in a new stale beneficial to the end aim ought to be achieved by a kind of self-learning self-organization strategy.

  • PDF

순차적 추천에서의 RNN, CNN 및 GAN 모델 비교 연구 (A Comparison Study of RNN, CNN, and GAN Models in Sequential Recommendation)

  • 윤지형;정재원;장백철
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.21-33
    • /
    • 2022
  • 최근 추천 시스템은 영화, 음악, 온라인 쇼핑 및 SNS 등 다양한 분야들에서 광범위하게 활용되고 있으며, 추천 시스템 분야에서 1세대 모델이라고 할수 있는 Apriori 모델을 통한 연관분석부터 최근 많은 주목을 받는 딥러닝 기반 모델들까지 많은 모델들이 제안되어왔다. 추천 시스템에서 기본 모델들은 협업 필터링(Collaborative filtering) 방법, 콘텐츠 기반 필터링(Content-based filtering) 방법, 그리고 이 두 방법을 통합적으로 사용하는 하이브리드 필터링(Hybrid filtering) 방법으로 분류될 수 있다. 하지만 이러한 모델들은 최근 점점 빠르게 변화하는 사용자-아이템 간의 상호관계와 빅데이터의 발전과 같은 내외 변화 요인들에 적응하지 못하면서 점점 분야 내 방법론으로써의 지위를 잃어가고 있다. 반면, 추천 시스템 내에서 딥러닝 기반 모델들은 비선형 변환, 표현학습, 순차적 모델링, 그리고 유연성과 같은 장점들 때문에 그 비중이 높아지고 있는 추세이다. 본 논문에서는 딥러닝 기반 추천 모델들 중에서도 사용자-아이템 간의 상호작용에 대해 보다 정확하고, 유연성 있게 분석이 가능한 순차적 모델링에 적합한 순환 신경망, 합성곱 신경망, 그리고 생성적 적대 신경망 중심 기반 모델로 분류하여 비교 및 분석한다.

캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘 (Self-optimizing feature selection algorithm for enhancing campaign effectiveness)

  • 서정수;안현철
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.173-198
    • /
    • 2020
  • 최근 온라인의 비약적인 활성화로 캠페인 채널들이 다양하게 확대되면서 과거와는 비교할 수 없을 수준의 다양한 유형들의 캠페인들이 기업에서 수행되고 있다. 하지만, 고객의 입장에서는 중복 노출로 인한 캠페인에 대한 피로감이 커지면서 스팸으로 인식하는 경향이 있고, 기업입장에서도 캠페인에 투자하는 비용은 점점 더 늘어났지만 실제 캠페인 성공률은 오히려 더 낮아지고 있는 등 캠페인 자체의 효용성이 낮아지고 있다는 문제점이 있어 실무적으로 캠페인의 효과를 높이고자 하는 다양한 연구들이 지속되고 있다. 특히 최근에는 기계학습을 이용하여 캠페인의 반응과 관련된 다양한 예측을 해보려는 시도들이 진행되고 있는데, 이 때 캠페인 데이터의 다양한 특징들로 인해 적절한 특징을 선별하는 것은 매우 중요하다. 전통적인 특징 선택 기법으로 탐욕 알고리즘(Greedy Algorithm) 중 SFS(Sequential Forward Selection), SBS(Sequential Backward Selection), SFFS(Sequential Floating Forward Selection) 등이 많이 사용되었지만 최적 특징만을 학습하는 모델을 생성하기 때문에 과적합의 위험이 크고, 특징이 많은 경우 분류 예측 성능 하락 및 학습시간이 많이 소요된다는 한계점이 있다. 이에 본 연구에서는 기존의 캠페인에서의 효과성 제고를 위해 개선된 방식의 특징 선택 알고리즘을 제안한다. 본 연구의 목적은 캠페인 시스템에서 처리해야 하는 데이터의 통계학적 특성을 이용하여 기계 학습 모델 성능 향상의 기반이 되는 특징 부분 집합을 탐색하는 과정에서 기존의 SFFS의 순차방식을 개선하는 것이다. 구체적으로 특징들의 데이터 변형을 통해 성능에 영향을 많이 끼치는 특징들을 먼저 도출하고 부정적인 영향을 미치는 특징들은 제거를 한 후 순차방식을 적용하여 탐색 성능에 대한 효율을 높이고 일반화된 예측이 가능하도록 개선된 알고리즘을 적용하였다. 실제 캠페인 데이터를 이용해 성능을 검증한 결과, 전통적인 탐욕알고리즘은 물론 유전자알고리즘(GA, Genetic Algorithm), RFE(Recursive Feature Elimination) 같은 기존 모형들 보다 제안된 모형이 보다 우수한 탐색 성능과 예측 성능을 보임을 확인할 수 있었다. 또한 제안 특징 선택 알고리즘은 도출된 특징들의 중요도를 제공하여 예측 결과의 분석 및 해석에도 도움을 줄 수 있다. 이를 통해 캠페인 유형별로 중요 특징에 대한 분석과 이해가 가능할 것으로 기대된다.

커널 이완 절차에 의한 커널 공간의 저밀도 표현 학습 (Spare Representation Learning of Kernel Space Using the Kernel Relaxation Procedure)

  • 류재홍;정종철
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.817-821
    • /
    • 2001
  • 본 논문은 분류 문제의 훈련 패턴으로부터 형성되는 커널 공간의 저밀도 표현을 가능하게 하는 커널 방법에 대한 새로운 학습방법론을 제안한다. 선형 판별 함수에 대한 기존의 학습법 중에서 이완 절차가 SVM(Support Vector Machine) 분류기와 동등하게 선형분리 가능 패턴분류 문제의 최대 마진 분리 초평면을 얻을 수 있다. 기존의 이완 절차는 지원 백터에 대한 필요 조건을 만족한다. 본 논문에서는 학습 중 지원 벡터를 확인하기 위한 충분 조건을 제시한다. 순차적 학습을 위하여 기존의 SVM을 확장하고 커널 판별함수를 정의한 후에 체계적인 학습방법을 제시한다. 실험 결과는 새 방법이 기존의 방법과 동등하거나 우수한 분류 성능을 갖고있음을 보여준다.

  • PDF

Motivation based Behavior Sequence Learning for an Autonomous Agent in Virtual Reality

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • 한국멀티미디어학회논문지
    • /
    • 제12권12호
    • /
    • pp.1819-1826
    • /
    • 2009
  • To enhance the automatic performance of existing predicting and planning algorithms that require a predefined probability of the states' transition, this paper proposes a multiple sequence generation system. When interacting with unknown environments, a virtual agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. We describe a sequential behavior generation method motivated from the change in the agent's state in order to help the virtual agent learn how to adapt to unknown environments. In a sequence learning process, the sensed states are grouped by a set of proposed motivation filters in order to reduce the learning computation of the large state space. In order to accomplish a goal with a high payoff, the learning agent makes a decision based on the observation of states' transitions. The proposed multiple sequence behaviors generation system increases the complexity and heightens the automatic planning of the virtual agent for interacting with the dynamic unknown environment. This model was tested in a virtual library to elucidate the process of the system.

  • PDF

A Study on the Establishment of Odor Management System in Gangwon-do Traditional Market

  • Min-Jae JUNG;Kwang-Yeol YOON;Sang-Rul KIM;Su-Hye KIM
    • 웰빙융합연구
    • /
    • 제6권2호
    • /
    • pp.27-31
    • /
    • 2023
  • Purpose: Establishment of a real-time monitoring system for odor control in traditional markets in Gangwon-do and a system for linking prevention facilities. Research design, data and methodology: Build server and system logic based on data through real-time monitoring device (sensor-based). A temporary data generation program for deep learning is developed to develop a model for odor data. Results: A REST API was developed for using the model prediction service, and a test was performed to find an algorithm with high prediction probability and parameter values optimized for learning. In the deep learning algorithm for AI modeling development, Pandas was used for data analysis and processing, and TensorFlow V2 (keras) was used as the deep learning library. The activation function was swish, the performance of the model was optimized for Adam, the performance was measured with MSE, the model method was Functional API, and the model storage format was Sequential API (LSTM)/HDF5. Conclusions: The developed system has the potential to effectively monitor and manage odors in traditional markets. By utilizing real-time data, the system can provide timely alerts and facilitate preventive measures to control and mitigate odors. The AI modeling component enhances the system's predictive capabilities, allowing for proactive odor management.

Gregorc 학습 스타일을 적용한 적응형 교수 시스템 개발 (Development of an Adaptive Instruction System Applying Gregorc's Learning Style)

  • 이재무
    • 정보교육학회논문지
    • /
    • 제17권4호
    • /
    • pp.383-391
    • /
    • 2013
  • 기존의 교수 시스템들은 각 학습자들의 다양한 특성을 충분히 고려하여 콘텐츠를 제공하지 못하고 있다. 이 연구에서는 각 학습자들의 학습스타일을 고려하여 최적의 학습 방법을 제공하는 적응형 교수 시스템의 개발을 목적으로 한다. 본 적응형 교수 시스템은 적응성을 지원하기 위하여 Gregorc의 학습 스타일을 적용하여 개발하였다. 그리고 개발한 본 적응형 교수 시스템을 대학생들에게 적용하고 학습 효과를 분석하였다. 학습 효과 분석을 위하여 적응형 교수 시스템을 이용하는 집단을 실험집단으로, 비적응형 교수 시스템으로 학습하는 집단을 비교집단으로 구별하고, 독립표본 t 테스트를 통하여 실험 연구를 수행하였다. 적용결과, 이 연구에서 개발한 적응형 교수 시스템은 전통적인 교수 시스템과의 전체 학습자를 대상으로 비교한 결과, 학업 학업성취도 향상 효과가 있는 것으로 나타났다. Gregorc 학습 스타일별로 효과 분석을 한 결과 활동순차적 학습 스타일이 가장 긍정적 학습 효과가 있었으며, 개념임의적 학습 스타일은 학습 효과가 미비한 것으로 나타났다.

지도 경험을 활용한 다계층 퍼셉트론의 순차적 학습 방법 (Utilizing Experiences of Supervisor in Sequential Learning for Multilayer Perceptron)

  • 이재영;김황수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권10호
    • /
    • pp.723-735
    • /
    • 2010
  • 학습 수준의 평가와 수준에 맞는 지식의 제공은 인간의 학습 과정에 많은 영향을 준다. 이것은 학습 순서가 중요하다는 것을 말하고 있으며, 기계 학습에서도 학습 순서를 고려할 필요가 있다. 본 연구는 학습 순서가 학습에 미치는 영향을 알아보기 위해, MLP의 학습에서 지도자의 경험을 이용하여 학습순서를 제어하는 방법을 제안한다. 지도 경험과 평가를 이용하여 MLP의 상태를 파악하고, 현 상태에서 학습 효율이 좋을 것으로 예상되는 학습 자료를 선택하여 학습을 시킨다. 지도자의 경험을 표현하고 활용하기 위해 CRF(Conditional Random Fields)를 이용하였다. 제안한 방법은 학습 자료를 선택한다는 점에서 능동 학습(Active Learning)과 유사하지만, 학습 순서를 제시하기 위한 자료의 선택이란 점에서 능동학습과는 차이가 있다. 분류 문제에 대하여 실험해 본 결과, 순서의 제어가 없는 학습의 경우에 비하여 학습 횟수의 측면에서 일반적으로 더 나은 학습 성능을 보여준다.

베이지안 행동유발성 모델을 이용한 행동동기 기반 행동 선택 메커니즘 (Behavioral motivation-based Action Selection Mechanism with Bayesian Affordance Models)

  • 이상형;서일홍
    • 전자공학회논문지SC
    • /
    • 제46권4호
    • /
    • pp.7-16
    • /
    • 2009
  • 로봇이 지능적이고 합리적으로 임무를 수행하기 위해서는 다양한 솜씨(skill)가 필요하다. 우리는 솜씨를 생성하기 위해 우선 행동유발성(affordance)을 학습한다. 행동유발성은 행동을 유발하게 하는 물체 또는 환경의 성질로써 솜씨를 생성하는데 유용하게 사용될 수 있다. 로봇이 수행하는 대부분의 임무는 순차적이고 목표 지향적인 행동을 필요로 한다. 그러나 행동유발성만을 이용하여 이러한 임무를 수행하는 것은 쉽지 않다. 이를 위해 우리는 행동유발성과 목표 지향적 요소를 반영하기 위한 소프트 행동동기 스위치(soft behavioral motivation switch)를 이용하여 솜씨를 생성한다. 솜씨는 현재 인지된 정보와 목표 지향적 요소를 결합하여 행동동기를 생성한다. 여기서 행동동기는 목표 지향적인 행동을 활성화시키기 위한 내부 상태를 말한다. 또한, 로봇은 임무 수행을 위해 순차적인 행동 선택을 필요로 한다. 우리는 목표 지향적이고 순차적인 행동 선택이 가능하도록 솜씨를 이용하여 솜씨 네트워크(skill network)를 생성한다. 로봇은 솜씨 네트워크를 이용하여 목표 지향적이고 순차적인 행동을 선택할 수 있다. 본 논문에서는 베이지안 네트워크를 이용한 행동유발성 모델링 및 학습 방법, 행동유발성과 소프트 행동동기 스위치를 이용한 솜씨 및 솜씨 네트워크 생성 방법, 마지막으로 솜씨 네트워크를 이용한 목표 지향적 행동 선택 방법을 제안한다. 우리의 방법을 증명하기 위해 제니보(애완 로봇)를 이용한 교시 기반 학습 방법을 통해 "물체 찾기", "물체에 접근하기", "물체의 냄새 맡기", 그리고 "물체를 발로 차기" 행동유발성들을 학습하였다. 또한, 이들을 이용하여 솜씨 및 솜씨 네트워크를 생성하여 제니보에 적용하고 실험하였다.