• Title/Summary/Keyword: Sequencing-by-synthesis

Search Result 60, Processing Time 0.029 seconds

Association between Single Nucleotide Polymorphisms of Fatty Acid Synthase and Fat Deposition in the Liver of the Overfed Goose

  • Wu, Wei;Guo, Xuan;Zhang, Lei;Hu, Dan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1244-1249
    • /
    • 2014
  • Goose fatty liver is one of the most delicious and popular foods in the world, but there is no reliable genetic marker for the early selection and breeding of geese with good liver-producing potential. In our study, one hundred and twenty-four 78-day-old Landes geese bred in Shunda Landes goose breeding farm, Jiutai, Jilin, China were selected randomly. The fatty livers were sampled each week after overfeeding during a three week period. Polymerase chain reaction-single strand conformation polymorphism and DNA sequencing were used to identify single nucleotide polymorphisms (SNPs) of fatty acid synthase (FAS), which is an important enzyme involved in the synthesis of fat under both physiological and pathological conditions. Least-squares correlation was established between these SNPs and fatty liver weight, abdominal fat weight, and intestinal fat weight of the overfed Landes geese, respectively. The results showed that fatty liver weight of geese with EF and FF genotypes (amplified by primer P1) was significantly higher than that of the EE genotype (p<0.05), and liver weight of CD and DD genotypes (amplified by primer P2) was significantly higher than that of the CC genotype (p<0.05). Different genotype combinations showed different liver weights, and from highest to lowest were ABDD, DDEF, DDFF, DDEE, ABEF, ABFF, AADD, and CDEF. Further analysis of DNA sequencing showed that there were two SNPs within the 5' promoter region the FAS gene. The geese of EF and FF genotypes carried a change of T to C, and the geese of CD and DD genotypes carried a change of A to G. The changes of the bases could potentially influence the binding of some transcription factors to this region as to regulate FAS gene. To our knowledge, this is the first report of SNPs found within the 5' promoter region of the Landes goose FAS gene, and our data will provide an insight for early selection of geese for liver production.

cDNA Microarray Analysis of Differential Gene Expression in Boar Testes during the Prepubertal Period

  • Lee, Dong-Mok;Lee, Ki-Ho;Choi, Jin Ho;Hyun, Jin Hee;Lee, Eun Ju;Bajracharya, Prati;Lee, Yong Seok;Chang, Jongsoo;Chung, Chung Soo;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1091-1101
    • /
    • 2009
  • In an attempt to understand the biochemical mechanism for the synthesis of the anabolic steroid, 19-nortestosterone, produced by prepubertal boar testes and its physiological role, normalized complementary DNA (cDNA) from boar testes was generated. DNA sequencing of 2,016 randomly selected clones yielded 794,116 base pairs of high quality nucleotide sequence. Computer-assisted assembly of the nucleotide sequence of each clone resulted in 423 contigs and 403 singletons including several genes for steroidogenic enzymes and molecules related to steroid metabolism. Analysis of gene expression pattern by use of the presently-fabricated cDNA microarray identified a number of genes that were differentially expressed during the postnatal development period in boar testes. Two genes of unknown function were identified to be highly expressed in the testis of 2-weeks-old neonatal boar. In addition, the sequencing of open reading frames of these genes revealed their homology with human alpha hemoglobin and Homo sapiens hypothetical LOC643669, transcript variant 1. Moreover, the transcripts of these genes were also detected in porcine muscle and adipocytes, in addition to Leydig cells of pigs.

Antitumor Toxic Protein Abrin and Abrus Agglutinin

  • Liu, Chao-Lin;Lin, Jung-Yaw
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.109-115
    • /
    • 2001
  • Abrus agglutinin was purified from the kernels of Abrus precatorius by Sepharose 4B affinity column chromatography followed by Sephadex G-100 gel filtration column chromatography. About 1.25 g of abrus agglutinin was obtained from 1 kg of the kernels. The LD$_{50}$ of abrus agglutinin is 5 mg/kg of body weight, which is less toxic than that of abrin, 20$\mu\textrm{g}$/kg body weight. The amino acid sequence of abrus agglutinin was determined by protein sequencing techniques and deduced from the nucleotide sequence of a cDNA clone encoding full length of abrus agglutinin. There are 258 residues, 2 residues and 267 residues in the A-chain, the linker peptide and the B-chain of abrus agglutinin, respectively. Abrus agglutinin had high homology to abrin-a (77.8%). The 13 amino acid residues involved in catalytic function, which are highly conserved among abrin and ricin, were also conserved within abrus agglutinin. The protein synthesis inhibitory activity of abrus agglutinin ($IC_{50}$/ = 3.5 nM) was weaker than that of abrin-a (0.05 nM). By molecular modeling followed by site-directed mutagenesis showed that Pro199 of abrus agglutinin A-chain located in amphipathic helix H and corresponding to Asn200 of abrin A-chain, can induce bending of helix H. This bending would presumably affect the binding of abrus agglutinin A-chain to its target sequence GpApGpAp, in the tetraloop structure of 285 r-RNA subunit and this could be one of major factors contributing to the relatively weak protein synthesis inhibitory activity and toxicity of abrus agglutinin.n.

  • PDF

Genetic Synthesis and Applications of Repetitive Protein Polymers (반복단위 단백질 고분자의 유전공학적 합성 및 응용)

  • Park, Mi-Sung;Choi, Cha-Yong;Won, Jong-In
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.179-184
    • /
    • 2007
  • This study introduces the characteristics and some applications of repetitive polypeptides, especially to the biomaterial, tissue engineering scaffolds, drug delivery system, and DNA separation systems. Since some fibrous proteins, which consist of repeating peptide monomers, have been reported that their physical properties are changed dramatically by means of temperature alteration or pH shifting. For that reason, fibrous protein-mimetic polypeptides, which are produced by the recombinant technology, can be applied to the diverse biological fields. Repetitive polypeptides can also be used in the bioseparation area such as DNA sequencing, because they make DNA separation possible in free-solution electrophoresis by conjugating DNA fragments to them. Moreover, artificial synthesis of repetitive polypeptides helps to demonstrate the correlations between mechanical properties and structures of natural protein polymer, which have been proven that repetitive domains are affected by the sequence of the repeating domains and the number of repeating subunits. Repetitive polypeptides can be biologically synthesized using some special cloning methods, which are represented here. Recursive directional ligation (RDL) and controlled cloning method (CCM) have been proposed as excellent cloning methods in that we can control the number of repetition in the multimerization of polypeptides and the components of repetitive polypeptides by either method.

Prospect of plant molecular cytogenetics in the 21st century

  • Mukai, Yasuhiko
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2003.10a
    • /
    • pp.14-27
    • /
    • 2003
  • The genomes of Arabidopsis and rice have been fully sequenced. Genomic sequencing provides global information about genome structure and organization. A comprehensive research account of our recent studies conducted on genome painting, comparative genomics and genome fusion is provided in order to project the prospects of plant cytogenetic research in post-genomics era. Genome analysis by GISH using genome painting is demonstrated as an excellent means suitable for visualization of a whole genome, since total genomic DNA representing the overall molecular composition of the genome is used as a probe. FISH on extended DNA fibers has been developed for high-resolution FISH and has contributed to determining the copy number and order of genes. We have also mapped a number of genes involving starch synthesis on wheat chromosomes by FISH and compared the position of these genes on linkage map of rice. Macro synteny between wheat and rice can be observed by comparing the location of these genes in spite of the fact that the size of DNA per chromosome differs by 20 fold in two. Moreover, to approach our goal towards making bread and udon noodles from rice flour in future by incorporating bread making and the noodle qualifies in rice, we have been successful in introducing large genomic DNA fragments containing agronomically important genes of wheat into a rice by successive introduction of large insert BAC clones, there by expanding genetic variability in rice. We call this method genome fusion.

  • PDF

Microbe-Based Plant Defense with a Novel Conprimycin Producing Streptomyces Species

  • Kwak, Youn-Sig
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.54-54
    • /
    • 2015
  • Crops lack genetic resistance to most necrotrophic soil-borne pathogens and parasitic nematodes that are ubiquitous in agroecosystems worldwide. To overcome this disadvantage, plants recruit and nurture specific group of antagonistic microorganisms from the soil microbiome to defend their roots against pathogens and other pests. The best example of this microbe-based defense of roots is observed in disease-suppressive soils in which the suppressiveness is induced by continuously growing crops that are susceptible to a pathogen. Suppressive soils occur globally yet the microbial basis of most is still poorly described. Fusarium wilt, caused by Fusarium oxysporum f. sp. fragariae is a major disease of strawberry and is naturally suppressed in Korean fields that have undergone continuous strawberry monoculture. Here we show that members of the genus Streptomyces are the specific bacterial components of the microbiome responsible for the suppressiveness that controls Fusarium wilt of strawberry. Furthermore, genome sequencing revealed that Streptomyces griseus, which produces a novel thiopetide antibiotic, is the principal species involved in the suppressiveness. Finally, chemical-genetic studies demonstrated that S. griseus antagonizes F. oxysporum by interfering with fungal cell wall synthesis. An attack by F. oxysporum initiates a defensive "cry for help" by strawberry root and the mustering of microbial defenses led by Streptomyces. These results provide a model for future studies to elucidate the basis of microbially-based defense systems and soil suppressiveness from the field to the molecular level.

  • PDF

Genome Analysis and Optimization of Caproic Acid Production of Clostridium butyricum GD1-1 Isolated from the Pit Mud of Nongxiangxing Baijiu

  • Min Li;Tao Li;Jia Zheng;Zongwei Qiao;Kaizheng Zhang;Huibo Luo;Wei Zou
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1337-1350
    • /
    • 2023
  • Caproic acid is a precursor substance for the synthesis of ethyl caproate, the main flavor substance of nongxiangxing baijiu liquor. In this study, Clostridium butyricum GD1-1, a strain with high caproic acid concentration (3.86 g/l), was isolated from the storage pit mud of nongxiangxing baijiu for sequencing and analysis. The strain's genome was 3,840,048 bp in length with 4,050 open reading frames. In addition, virulence factor annotation analysis showed C. butyricum GD1-1 to be safe at the genetic level. However, the annotation results using the Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server predicted a deficiency in the strain's synthesis of alanine, methionine, and biotin. These results were confirmed by essential nutrient factor validation experiments. Furthermore, the optimized medium conditions for caproic acid concentration by strain GD1-1 were (g/l): glucose 30, NaCl 5, yeast extract 10, peptone 10, beef paste 10, sodium acetate 11, L-cysteine 0.6, biotin 0.004, starch 2, and 2.0% ethanol. The optimized fermentation conditions for caproic acid production by C. butyricum GD1-1 on a single-factor basis were: 5% inoculum volume, 35℃, pH 7, and 90% loading volume. Under optimal conditions, the caproic acid concentration of strain GD1-1 reached 5.42 g/l, which was 1.40 times higher than the initial concentration. C. butyricum GD1-1 could be further used in caproic acid production, NXXB pit mud strengthening and maintenance, and artificial pit mud preparation.

Performance Evaluation of Hybrid SBR Aerobic Digestion combined with Ultrasonication by using a Mathematical Model (초음파 결합형 SBR 호기성 소화 모델과 영향 예측)

  • Kim, Sung Hong;Lee, Dong Woo;Kim, Dong Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.897-905
    • /
    • 2012
  • Based on the activated sludge model, a simple aerobic digestion model which represents the aerobic sludge digestion by sequencing batch reactor(SBR) equipped with ultrasonicator was composed and performed in this study. The results are as follows. Aerobic digestion efficiency can be increased by adopting ultrasonic pretreatment. For the 5 days of SRT, 24 % of particulate component is predicted to be removed by ultrasonic pretreatment and aerobic digestion. This is 7 %p higher than that of conventional aerobic digestion. A Hybrid SBR aerobic digestion combined with ultrasonication shows higher digestion efficiency than aerobic digestion and ultrasonic pretreatment system. In case of this hybrid system, the digestion efficiency was predicted up to 49 % when the ultrasonication was performed every 2 hours, repeatedly. However, excessive treatment like every hours of ultrasonication in an aerobic digestion process results in adverse effect on TCOD removal because biomass disintegrated completely and the solubilized COD can not be used for the biomass synthesis again.

Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

  • Nie, Yuanyang;Zhou, Zhiwei;Guan, Jiuqiang;Xia, Baixue;Luo, Xiaolin;Yang, Yang;Fu, Yu;Sun, Qun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.957-966
    • /
    • 2017
  • Objective: To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods: The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results: Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion: Yaks' age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks' growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid, which are essential to the normal growth of yaks.

Search for Novel Stress-responsive Protein Components Using a Yeast Mutant Lacking Two Cytosolic Hsp70 Genes, SSA1 and SSA2

  • Matsumoto, Rena;Rakwal, Randeep;Agrawal, Ganesh Kumar;Jung, Young-Ho;Jwa, Nam-Soo;Yonekura, Masami;Iwahashi, Hitoshi;Akama, Kuniko
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.381-388
    • /
    • 2006
  • Heat shock proteins (Hsp) 70 are a ubiquitous family of molecular chaperones involved in many cellular processes. A yeast strain, ssa1/2, with two functionally redundant cytosolic Hsp70s (SSA1 and SSA2) deleted shows thermotolerance comparable to mildly heatshocked wild type yeast, as well as increased protein synthesis and ubiquitin-proteasome protein degradation. Since mRNA abundance does not always correlate well with protein expression levels it is essential to study proteins directly. We used a gel-based approach to identify stress-responsive proteins in the ssa1/2 mutant and identified 43 differentially expressed spots. These were trypsin-digested and analyzed by nano electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). A total of 22 non-redundant proteins were identified, 11 of which were confirmed by N-terminal sequencing. Nine proteins, most of which were up-regulated (2-fold or more) in the ssa1/2 mutant, proved to be stress-inducible proteins such as molecular chaperones and anti-oxidant proteins, or proteins related to carbohydrate metabolism. Interestingly, a translational factor Hyp2p up-regulated in the mutant was also found to be highly phosphorylated. These results indicate that the cytosolic Hsp70s, Ssa1p and Ssa2p, regulate an abundance of proteins mainly involved in stress responses and protein synthesis.