• Title/Summary/Keyword: Sequence Stratigraphy

Search Result 52, Processing Time 0.025 seconds

Petrology of the Cretaceous volcanic rocks in Pusan ares, Korea (부산일원에 분포하는 백악기 화산암류의 암석학적 연구(I))

  • 김진섭;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.156-166
    • /
    • 1993
  • The volcanic stratigraphy and geochemistry of the Cretaceous volcanic rocks in the southern part of the Pusan showed that the volcanic rocks of the study area consist of alternating pyroclastic rocks and andesitic lavas, apparently constituting a thick volcanic sequence of a stratovolcano. The andesitic rocks contain augite, plagioclase, and hornblende as phenocrysts. Matrix minerals are augite, magnetite, hornblende, apatite. Mafic minerals, such as chlorite, epidote, sericite, and iron oxides occur as alteration products. Dacitic volcanic breccia and rhyolitic welded ash-flow tuff locally overlie the andesitic rocks. The rocks reported in the previous studies as andesitic breccia and andesite plot in the field of basalt, basaltic andesite, andesite, dacite and rhyolite, based on their chemical compositions. The volcanic rocks of the study area belong to the calc-alkaline series, and the andesitic rocks which are predominant in the area plot to the field of orogenic andesite.

  • PDF

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications (전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론)

  • Kwon, Y.K.
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.317-333
    • /
    • 2012
  • The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.

Stratigraphy of the BP-1 well from Sora Sub-basin (소라소분지 BP-1공의 층서연구)

  • Oh, Jaeho;Kim, Yongmi;Yun, Hyesu;Park, Eunju;Yi, Songsuk;Lee, Minwoo
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.551-564
    • /
    • 2012
  • This study carried out palynological analysis and seismic interpretation to establish a stratigraphic and environmental reconstruction mainly based on fossil palynomorphs and seismic reflection data correlated with the oil exploation well (BP-1) located in the Sora Sub-basin. There were frequent environmental and floral changes due to sea level change in the Sora Sub-basin. The palynomorph assemblages found in the well sediments enabled paleoecological zonation of the well sediment sequence resulting in 4 zones: Ecozone III, Ecozone IV, Ecozone V, Ecozone VI. Index fossils among palynomorphs indicate geological ages of the units within the well ranging from Eocene to Pleistocene, and paleoenvironment varies from freshwater to inner neritic marine. Previous studies suggest that the marine deposits were slightly different in stratigraphic range from well to well. It is considered the difference is credited to geomorphological setting. This study also shows stratigraphic correlation between existing wells and BP-1 well to establishes a standard stratigraphy of the Domi Basin.

Magnetic Parameters as Indicators of Late-Quaternary Environments on Fort Riley Kansas (암석 자기 변수들을 이용한 제4기 고환경 복원-Fort Riley 캔사스)

  • Park, kyeong
    • The Korean Journal of Quaternary Research
    • /
    • v.11 no.1
    • /
    • pp.57-68
    • /
    • 1997
  • Climatic change of the late-Quaternary period has been record-ed in the loess deposits of the central Great plains and the record of such change is extractable using a number of approaches and parameters. The stratigraphy of loess deposits which have been investigated on Fort Riley exhibits the same sequence of loess units and intercalated buried soils as is found elsewhere in the re-gion but adds detail unique to the reservation Upland late-Qua-ternary composite stratigraphy preserved on the reservation con-sists of the basal Sangamon soil of the Last interglacial(c. 120-110ka), Gilman Canyon Formation(c. >40 -20ka), Peoria loess(c. 20 -10ka) Brady soil(c. 11 -10ka) Bignell loess(c. 9-\ulcornerka). and mod-ern surface soil. Application of magnetic analyses has provided proxy data sets that represent a time series of climatically regulated pedogenesis/weathering and botanical composition. magetic data have yielded an impression of the variation in climate from Sangamon time to the late Holocene through a reconstruction of the history of pedogenesis/weathering. Sangamon soil formation dominated the reservation durin the Last interglacial as indicated by magnetic parameters. During Gil-man Canyon time loess influx was usually sufficiently slow as to permit pedogenesis which appears to have been at a maximum twice during that time. Warm season grasses were important dur-ing soil formation but diminished in importance during the peri-ods of more rapid loess fall which were cooler and perhaps wet-ter. Peoria loess fall a function of the deterioration of climate during the last Glacial Maximum thinly blanketed the reservation with thickest accumulations occurring to the north-west(Bala Cemetery site)proximal to the source region. Long-term surface stability did not apparently occur within Peoria time but short-term stability may be indicaed by the presence of thin weathering zones(incipient soils) in the Peoria loess. Re-gional landscape stability prevailed during the environmental shift at the Pleistocene/Holocene transition resulting in forma-tion of the well expressed Brady soil. One or more weak soils developed in the Bignell loess as it ac-cumulated. A notable feature of the Bignell loess is the appear-ance of the Altithermal dry period: the loess experienced little weathering and was dominated by warm season grasses until the latter of the Holocene.

  • PDF

Muti-variable Sequence Stratigraphic Model and its Application to Shelf-Slope System of the Southwestern Ulleung Basin Margin (다중변수 순차층서 모델 개발을 통한 울릉분지 남서부 대륙주변부의 층서연구)

  • Yoon Seok Hoon;Park Se Jin;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.36-47
    • /
    • 1997
  • This study presents multi-variable sequence model for a broader application of sequence concept proposed by Exxon group. The concept of the multi-variable model is based on the fact that internal organization and boundary type of the sequences are determined by three varying factors including 3rd-order cycles of eustasy, and tectonic movement and sediment influx with 2nd-order changes. Instead of Exxon group's systems tracts, this model adopts parasequence sets as the fundamental building blocks of the sequence, because they are descriptive stratigraphic units simply defined by internal stacking pattern, reflecting interactions of accommodation and sediment influx. Seven sequence types which vary in number and type of internal parasequence sets are formulated as associations of four types of accommodation development and three grades of sediment influx. In the southwestern margin of Ulleung Basin, the multi-variable sequence analysis of shelf-slope sequence shows systematic changes in stratal patterns and the numbs, of constituent parasequence sets (i.e. sequence type). These changes are interpreted to reflect temporal and spatial changes in type and rate of tectonic movement and sediment influx, as a result of back-arc opening and closing. During the back-arc opening, rapid subsidence, continuous rise of relative sea level, and high sediment influx gave rise to sequences dominantly of single progradational parasequence set. In the early stage of back-arc closing accompanied by local contractional deformation, different types of sequences contemporaneously formed depending on the spatial changes in tectonically-controlled accommodation and influx rates. During the subsequent slow back-arc subsidence, rise-dominated relative sea-level cycle was coupled with moderate to high sedimentation rate to have resulted in sequences consisting of $2~3$ parasequence sets.

  • PDF

Establishment of an Ice Core Processing Method and Analytical Procedures for Fundamental Proxies (빙하코어의 전처리 방법 및 기초 프록시 분석법 확립)

  • Jun, Seong Joon;Hong, Sang Bum;Hur, Soon Do;Lee, Jeonghoon;Kang, Jung-Ho;Hwang, Hee Jin;Chung, Ji Woong;Jung, Hye Jin;Han, Changhee;Hong, Sungmin
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • We established the first complete ice core processing method and analytical procedures for fundamental proxies, using a 40.2 m long ice core drilled on the Mt. Tsambagarav glacier in the Mongolian Altai mountains in July 2008. The whole core was first divided into two sub ice core sections and the measurements of the visual stratigraphy and electrical conductivity were performed on the surface of these sub core sections. A continuous sequence of samples was then prepared for chemical analyses (stable isotope ratios of oxygen ($^{18}O/^{16}O$) and hydrogen ($^2H/^1H$), soluble ions and trace elements). A total of 29 insoluble dust layers were identified from the measurement of visual stratigraphy. The electrical conductivity measurement (ECM) shows 11 peaks with the current more than 0.8 ${\mu}A$ Comparing the profiles of $SO_4{^{2-}}$ and $Cl^-$ concentrations to correlate with known volcanic eruptions, the first two ECM peaks appear to be linked to the eruptions (January and June 2007) of Kliuchevskoi volcano on the Kamchatka Peninsula of Russia, which supports the reliability of our ECM data. Finally, the composition of stable isotopes (${\delta}^{18}O$ and ${\delta}D$) shows a well-defined seasonal variation, suggesting that various chemical proxies may have been well preserved in the successive ice layers of Tsambagarav ice core. Our ice core processing method and analytical procedures for fundamental proxies are expected to be used for paleoclimate and paleoenvironmental studies from polar and alpine ice cores.

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks (포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代))

  • Lee, Hyun Koo;Moon, Hi-Soo;Min, Kyung Duck;Kim, In-Soo;Yun, Hyesu;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

The Deformation Properties and their Formative Processes in Ogcheon Terrain around Ogcheon Town, North Chungcheong Province, Korea (옥천대(沃天帶)의 변형특성(變形特性)과 그 형성(形成) 과정(過程) -충북(忠北) 남서단(南西端)을 예(例)로 하여-)

  • Lee, Byung-Joo;Park, Bong-Soon
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.111-123
    • /
    • 1983
  • The studied area is situated in tho southern part of the Ogcheon fold belt, where the "Ogcheon Group" is widespread with Jurassic and Cretaceous intrusions. The regional stratigraphy may be divided into three formations, the lower pebble bearing phyllitic, the middle dark grey phyllitic, and the upper black phyllitic formations. For the purposes of the present study, the area has been partitioned to three structural subareas based on major fold axes and fault line. The main subjects of the research have been discussed from two different points, multiple deformation and minor-micro fold styles. The former is analyzed by pebble elongation, folding and lineation in a pebbly formation as well as schistosity, crenulation cleavage and crenulated lineation in the phyllitic formation. The later describes the characteristic features of fold style in each formation and structural subarea. Although minor fold axes within broad pelitic rocks usually tend to trend northeast and to plunge northward, most of these were probably formed by two stages, first a similar fold phase and second a kink fold phase. Measured structural elements indicate that crenulation cleavage in phyllite formed parallel to fold axes of folded pebble followed a NE phase of first deformation and a fold axes of pebbles diagonal to bedding of phyllite are represented by a NW phase of a second deformation. Microscopically, quartz and mica grains form a micro fold enabling one to establish tectonic levels which occur in different deformation modes in each stratigraphic sequence. Microtextures such as crenulation cleavage, kink band, aggregate band of mica and pressure shadows of porphyroblast of quartz related to qarnet and staurolite may suggest the time relation of crystallization and tectonism. The result of this study may conform that three deformation phase, NE first phase-NE second phase-NW phase, occurred in the area.

  • PDF

Stratigraphy and Tectonics of Okcheon System in the Area between Chungju and Munkyeong (충주문경간(忠州聞慶間)의 옥천계(沃川系)의 층서(層序)와 구조(構造))

  • Kim, Oku Joon
    • Economic and Environmental Geology
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 1968
  • Some of geologists in Korea recently postlated that Okchon system previously known to be precambrian age was the metamorphosed sediments of post-Chosen (Ordovician and pre-Kyeongsang (late Jurassic to Cretaceous) periods, or even definitely of Triassic period simply on the basis of the fact that Okcheon system overlies the Great Limestone series of Chosen system of Camber-ordovician age, and of other few assumptions of minor importance. As a result of such correlation, thick series of metasediments and Okcheon system of unknown age were established in this particular region and vaguely correlated to Paleozoic and Mesozoic sediments. Recent study done by the author reveled that: 1) only the upper Okcheon bed of S. Nakamura was true Okcheon system, and the middle and lower Okcheon beds were excluded, because they were correlated to Cambrian and Permian sediments resfectively, 2) Sangnaeri, Seochangri, and rengam formations of unknown age, and Baekhwasan, Jobong, and Ihwaryeong formations of Okcheon system of also unknown age were the metamorphosed Yangdeok system of Cambrian age, all of these formations were differentiated by the previous workers and were equivalent to the middle Okcheon system of S. Nakamure, and. 3) These metamorphosed Yangdeok system overlaid apparently the Great Limestone series in forms of overthrust and klippe which were produced by the orogeny took place during post-Daedong and pre-Kyeongsang period (probably middle to the Jurassic). The Sobaeksan Range, folded mountain Chains was also formed by this orogeny. Thus, Okcheon system newly defined by the author is precambrain age and consists in ascending order of Kemyenogsan, Hyangsan dolomite, and Daehangsan quartzite formation which were previously classified into metasediments of unknown age, and Munjuri, and Hwangkanri, formations which were differentiated into Okcheon system unknown age by the previous workers, but are of reversed sequence. Myeongori and Bukrori formations of Okcheon System are regard by the author as part of Hwangkanri formation. Few other assumption of minor important taken by the previous workers as their positive evidences are carefully explained that they were misinterpreted.

  • PDF

Structural control, and Correlation of Uranium Distribution and Mineralogy of Meta-pelites in Ogcheon Terrain, Korea (한반도(韓半島) 옥천대(沃川帶)에 분포(分布)하는 함(含)우라늄층(層)의 지질구조규제(地質構造規制) 및 조성광물(組成鑛物)과 우라늄분포(分布)와의 상관관계연구(相關關係硏究))

  • Park, Bong-Soon;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.13 no.4
    • /
    • pp.215-227
    • /
    • 1980
  • The rock units of Goesan area in the Ogcheon metamor phic terrain established on the basis of field criteria should be redefined into following sequence. Based on shear senses in secondary small structures which are usually observable in the investigated area, the stratigraphy can be lithologically divided into the lower pelite, pebbly mudstone, upper pelite, quartzite and psammite unit in ascending order. This conclusion is in discordance with a previous opinion; Munjuri formation and Guryongsan formation may be equivalent to upper pelite unit, Iwonri formation and Hwanggangri formation to pebbly mudstone. From this, it may be inferred that isoclinal overturned folds repeatly occur in the area. The uranium bearing coaly thin layers in upper pelite unit have relatively broad exposures in Deogpyeongri block of Goesan area along culmination zone in the central part of the investigated area. It is believed that structural feature in the block recognized complexly refolded synform plunging to southwest. Mineralogical and radiometric studies were made on 135 representative samples from the Ogcheon Group of Korea. The mineralogy of all black slate samples is qualitatively similar but quantitatively ·different. The uranium distribution in the studied area show approximately log normal. Uranium in the black slates of the Ogcheon Group was deposited together under same physico-chemical environmental conditions. The chemical and geological factors that controlled the abundance of organic carbon and iron oxides also controlled the uranium content. The relationship of the major components to uranium can be expressed by the following regression equation: $Log(U\times10^4+1)$= 1.70999-0.00367(quartz)0.00512(micas)-0.00930 (other silicates)+0.01911 (iron oxides)-0.03389(other opaques)+0.02062(organic carbon).

  • PDF