• Title/Summary/Keyword: Separator efficiency

Search Result 153, Processing Time 0.023 seconds

Fabrication of Movable Separator for Site to Discharge Medium and Large-Scale Mixed Construction Waste from Agricultural Areas and Its Efficiency Evaluation (농촌지역 혼합건설폐기물의 중·소규모 배출현장용 이동식 분리선별기 제작 및 선별 효율 성능평가)

  • Kim, Byung-Yun;Park, Ji-Sun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In this study, a real-sized experimental equipment (pilot plant) was built at the site based on the preliminary research data to develop a movable separator for the mixed construction waste that can be implemented in agricultural areas to review its feasibility through the evaluation of its separation efficiency by waste types. The final construction of the movable separator and experimental results of the separation efficiency are summarized as follows. 1) The separation performance according to the blade type was the best for the combustible wastes either with 26 numbers of L-type blades and 32 numbers of pin type blades. As far as combination of blade types, when the L-type and pin-type were combined, the best separation efficiency was achieved. 2) The separation efficiency for waste wood by the conveyor type and angle of inclination (slope) of the trommel was the best when the conveyor had ribs of seagull shape with the angle of inclination 45°. 3) The separation efficiencies by process showed that 65.9% was separated as inorganic demolition wastes, 18.2% as waste woods, and 16.0% as combustible wastes at conveyor speed of 2-3 rpm, and the error rate was the least from the waste types generated in the dismantle site.

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.

Performance of cyclone separator for syngas production in downdraft gasifier

  • Kumara, Sunil;Shukla, S.K.
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.223-237
    • /
    • 2016
  • The excess use of conventional sources of energy by the industries and power sector result in acute shortage of energy produced by fossil fuel. To overcome this energy crisis, biomass feedstock is used to produce syngas or producer gas. For cleaning the dust particle present in the producer gas cyclone separators are largely used. In this paper we investigate the performance parameters of cyclone separator mainly efficiency and pressure drop for different feedstock. Cyclone performance has been evaluated based on experimentation and empirical approach using Leith and Licht model. The same has also been calculated by using turbulent RSM in Ansys Fluent for Wood and Coconut shell feedstock. Experimental results show that using feed stock with 10 % Calcium oxide (CaO) by weight, the efficiency of cyclone got reduced from 71.87% to 70.75% for wood feed stock, whereas in case of coconut shell, the cyclone efficiency got reduced from 78% to 73.44%. It is also seen that Leith and Licht model and Reynolds stress model (RMS) predicts very close to the particle collection efficiency evaluated by using experimental data.

Development of Solid/Liquid Separation Technique for Krill (Eupausia superba) (남극 크릴새우의 고액분리 기술개발)

  • Oh, I.H.;Jang, C.H.;Kim, W.G.;Yang, S.Y.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2011
  • Economic development involves increase in life expectancy as well as human health care. Consequently, demand for fish meal and fish oil is rapidly growing. In particular, Krill (Eupausia superba) oil product is in high demand due to its rich unsaturated-fatty acid, and thus stable supplies are necessary in the krill oil market. It is required for captured krills to be immediately frozen and stored during ship transport, since proteins of the krill are quickly denatured in natural temperature condition. However, the transportation cost has been sharply increased, which encourages researchers to involve in studies for development of efficient oil extraction process. In this study, a solid/liquid separation technique on boat for the krill oil was developed through triple separation tests using only a separator or using either brush or crusher prior to the separator. The separation tests revealed that the efficiency were 46.2, 60.2 and 60.4 % by the separator, combination with brush, and combination with crusher, respectively. In addition, it was found that byproduct, extracted cake, derived from the separation process could be used as a feed stuff. These results suggest that smashing using the brush or crusher prior to the separator is more efficient than using only the separator.

Operational Variables and Performance of Hydrodynamic Separator Treating Rainfall Runoff from Bridge (수리동력학적 분리장치에 의한 교량에서의 비점원 오염물질 처리시 운전변수와 분리효율에 관한 연구)

  • Kim, Yeonseok;Yu, Jianghua;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.342-348
    • /
    • 2011
  • A hydrodynamic separator using natural free energy provided by bridge was operated for the treatment of stormwater runoff. The separator was automatically controlled by using electronic valve which is connected with pressure meter. Normally the separator was opened during dry days, but it was closed after the capture of first flush. The results indicated that the average pressure and the flow rate were directly affected by the rainfall intensity. The pressure was more than 3 meters as the rainfall intensity was above 5 mm/hr. The percent volume of underflow decreased as the pressure and flow rate increased, but the percent volume of overflow showed an opposite behavior. The concentration of total suspended solids (TSS) in underflow increased as a function of increasing pressure while it decreased in overflow. The TSS separation efficiency was evaluated based on mass balance. It ranged from 30% to 90% with the pressure ranging from 2 to 10 meters, and it was proportional to pressure and flow rate. The analysis of water balance indicated that around 13% of total runoff was captured by the separator as a first flush, and this runoff was separated as underflow and overflow with the respective percent volume of 29% and 71%. The pollutants budget was also examined based on mass balance. The results showed that the percent of TSS, $COD_{cr}$, TN and TP in underflow were 73%, 59%, 7.6% and 49%, respectively.

A Study on Effect of Jet Mixed Separator Combination for Pre-treatment of Ultrafiltration Membrane Filtration Process (UF 막 여과 공정의 효과적인 전처리 공정으로 분류교반고액분리조(噴流攪拌固液分離槽) (Jet Mixed Separator: JMS) 도입 효과에 관한 연구)

  • Lee, Sanghyup;Jang, Nakyong;Watanabe, Yoshimasa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • In this research, we tried to combine the coagulation/sedimentation process as pre-treatment with UF membrane filtration to reduce the membrane fouling and to improve the permeate water quality. We used the Jet Mixed Separator (JMS) as coagulation/sedimentation process. We observed that the HPC and E.Coli can't be removed through the direct UF memebrane filtation of surface water. The removal efficiency of dissolved organic substances, indicated by E260 and DOC, was 40% and 15%, respectively. However, the removal efficiency of it increased two time as a result of combination of JMS process as coagulation/sedimentation pre-treatment. This was resulted from the formation of high molecular humic micro-floc through JMS process. The accumulation amount of irreversible cake layer which was not removed by backwashing was less than direct UF membrane filtration of surface water. Moreover, the loading rate of fouling induced substances, such as humic substances and suspended substances, on membrane surface decreased drastically through JMS process. As a result, the accumulation amount of irreversible cake on membrane surface was decreased.

Development of Rotating Corn Type Garlic Separator(I) -Prototype and its performance test- (회전 원추형 마늘 쪽분리기 개발에 관한 연구 (I) -시작기 개발 및 성능시험-)

  • 이종수;김기복;이정삼
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.131-140
    • /
    • 2001
  • This study was conducted to develop a garlic separator which could to reduce the labor in preparation of seeding. After consideration of the design criteria of a garlic separator such as no additional conveying device, simple construction and operation, enhancement of separating efficiency, reduction of damage, degree a rotating corn type garlic separator was designed. The effects of design parameters such as height and angle of the inner and outer corns, rotating speed of inner corn on the separating performance of the prototype were estimated. In performance was compared with manual work. The results are summarized as follows. 1. Garlic bulbs were separated by a spiral movement in the gap between inner rotating corn and outer fixed corn. At constant feed rate of garlic bulbs, the capacity of garlic separation increased with increase of rotating speed of inner corn. Especially, the capacity was very high at the rotating speeds of 300 and 400rpm. 2. The damage degree of separated garlics increased with rotating speed of corn within 10%. Above 300rpm, separability of Uisung garlic was about 100% and incomplete separation of Namdo garlic was within 2%. 3. The capacity of prototype garlic separator developed in this study was 30 times as large as that of human being.

  • PDF

Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment (합류식 하수관거 월류수 처리를 위한 와류형 분리장치의 최적 운전조건)

  • Han, Jung-kyun;Joo, Jae-young;Lee, Bum-joon;Na, Ji-hun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.557-564
    • /
    • 2009
  • A combined sewer system can quickly drain both storm water and sewage, improve the living environment and resolve flood measures. A combined sewer system is much superior to separate sewer system in reduction of the non-point source pollutant load. However, during rainfall. it is impossible in time, space and economic terms to cope with the entire volume of storm water. A sewage system that exceeds the capacity of the sewer facilities drain into the river mixed with storm-water. In addition, high concentration of CSOs by first-flush increase pollution load and reduce treatment efficiency in sewage treatment plant. The aim of this study was to develope a processing unit for the removal of high CSOs concentrations in relation to water quality during rainfall events in a combined sewer. The most suitable operational design for processing facilities under various conditions was also determined. With a designed discharge of 19.89 m/min, the removal efficiency was good, without excessive overflow, but it was less effective in relation to underflow, and decreased with decreasing particle size and specific gravity. It was necessary to lessen radius of vortex separator for increasing inlet velocity in optimum range for efficient performance, and removal efficiency was considered to high because of rotation increases through enlargement of comparing height of vortex separator in diameter. By distribution of influent particle size, the actual turbulent flow and experimental results was a little different from the theoretical removal efficiency due to turbulent effect in device.

Effects of Reynolds Number and Shape of Manifold on Flow Rate in Separator for Polymer Electrolyte Fuel Cell (ICCAS 2004)

  • Huang, Chaii;Ozawa, Yoshikuni;Ennoji, Hisayuki;Iijima, Toshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.68-71
    • /
    • 2004
  • Recently, a great deal of research and development of a fuel cell have been carried out to solve problems on the drain of fossil fuel, air pollution and global warning. In order to improve the efficiency of a fuel cell, it is necessary to clarify the flow in separator. In this study, distributions of velocity flow rate and pressure, and streamlines are examined in detail from numerical analysis with CFD code. In the experiment the distribution of flow rate is measured and flow in the each grooves of the separator is visualized by dye method changing Reynolds number. Furthermore, effects of size of the inlet and outlet manifolds and shape of ribs near the inlet outlet on the distributions of flow and pressure are examined.

  • PDF

Design Optimization and Fabrication of an Advanced High Gradient Magnetic Separator

  • Park, E.B;Choi, S.D;Yang, C.J
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.59-64
    • /
    • 2000
  • A drum type of high gradient magnetic separator was designed and optimized by computer simulations. The magnetic separator consists of high performance rare earth $(Nd_2Fe_14B)$ permanent magnets and magnetic yokes of extremely low carbon steel interconnecting the permanent magnets. Magnetic circuits of the separator were simulated for the aim of the least cost, highest magnetic strength and most efficient function by using specialized S/W (Vector Field Program) employing the Finite Element Method. The magnetic flux density was provided to be strong enough to collect the invisible fine metal particles from the surface of hot rolled steel plate with the efficiency of almost 95%.

  • PDF