• Title/Summary/Keyword: Separation technology

Search Result 3,002, Processing Time 0.028 seconds

A rapid separation of Cs, Sr and Ba using gas pressurized extraction chromatography with inductively coupled plasma-mass spectrometry

  • Sojin Jeong;Jihye Kim;Hanul Cho;Hwakyeung Jeong;Byungman Kang;Sang Ho Lim
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.123-129
    • /
    • 2024
  • We present a rapid method for the determination of Cs, Sr, and Ba, heat generators found in highly active liquid wastes, by gas-pressurized extraction chromatography (GPEC) using a column containing a cation-exchange resin. GPEC is a microscale column chromatographic technique that uses a constant flow rate of solvent (0.07 mL/min) with pressurized nitrogen gas supplied through a valve. In particular, because this method uses a small sample volume (a few hundred microliters), it produces less chemical waste and allows for faster separation compared to traditional column chromatography. In this study, we evaluated the separation of Cs, Sr, and Ba using GPEC. The eluate from the column (GPEC or conventional column chromatography) was quantitatively analyzed using inductively coupled plasma-mass spectrometry to measure the column recovery and precision. The column reproducibility of the proposed GPEC system (RSDs of recoveries) ranged from 2.7 to 4.1 %, and the column recoveries for the three elements ranged from 72 to 98% when aqueous HCl was used as the eluent. The GPEC results are slightly different in efficiency and separation resolution compared to those of conventional column chromatography because of the differences in the eluent flow rate as well as the internal diameter and length of the column. However, the two methods had similar recoveries for Cs and Sr, and the precision of GPEC was improved by two-fold. Remarkably, the solvent volume required for GPEC analysis was five times lower than that of the conventional method, and the total analysis time was 11 times shorter.

Multi-channel Speech Enhancement Using Blind Source Separation and Cross-channel Wiener Filtering

  • Jang, Gil-Jin;Choi, Chang-Kyu;Lee, Yong-Beom;Kim, Jeong-Su;Kim, Sang-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2E
    • /
    • pp.56-67
    • /
    • 2004
  • Despite abundant research outcomes of blind source separation (BSS) in many types of simulated environments, their performances are still not satisfactory to be applied to the real environments. The major obstacle may seem the finite filter length of the assumed mixing model and the nonlinear sensor noises. This paper presents a two-step speech enhancement method with multiple microphone inputs. The first step performs a frequency-domain BSS algorithm to produce multiple outputs without any prior knowledge of the mixed source signals. The second step further removes the remaining cross-channel interference by a spectral cancellation approach using a probabilistic source absence/presence detection technique. The desired primary source is detected every frame of the signal, and the secondary source is estimated in the power spectral domain using the other BSS output as a reference interfering source. Then the estimated secondary source is subtracted to reduce the cross-channel interference. Our experimental results show good separation enhancement performances on the real recordings of speech and music signals compared to the conventional BSS methods.

An Analysis on the Cryogenic Distillation Process for $^{13}CH_4$ Separation from LNG by Short-Cut Method (Short-Cut 방법에 의한 LNG 성분에서 $^{13}CH_4$초저온 증류 공정 분석)

  • Lee Youngchul;Song Taekyoong;Cho ByungHak;Baek Youngsoon;Song KyuMin
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.22-27
    • /
    • 2005
  • In this study, we analyze computational simulation of cryogenic distillation process to separate $^{13}CH_4$ and $^{12}CH_4$ from LNG by using the cryogenic energy. Used computational simulation program is made Smoker's equation and FUG(Fenske-Underwood-Gilliland)'s method by short-cut method. Generally speaking, the technology of carbon isotope separation is studied by many methods, especially the separation by cryogenic distillation process is commercialized because of many merits.

  • PDF

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Probabilistic evaluation of separation distance between two adjacent structures

  • Naeej, Mojtaba;Amiri, Javad Vaseghi;Jalali, Sayyed Ghasem
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.427-437
    • /
    • 2018
  • Structural pounding is commonly observed phenomenon during major ground motion, which can cause both structural and architectural damages. To reduce the amount of damage from pounding, the best and effective way is to increase the separation distance. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. The aim of this research is to estimate probabilistic separation distance between adjacent structures by considering the variability in the system and uncertainties in the earthquakes characteristics through comprehensive numerical simulations. A large number of models were generated using a robust Monte-Carlo simulation. In total, 6.54 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results show that a gap size of 50%, 70% and 100% of the considered design code for the structural periods in the range of 0.1-0.5 s, leads to have the probability of pounding about 41.5%, 18% and 5.8%, respectively. Finally, based on the results, two equations are developed for probabilistic determination of needed structural separation distance.

Separation of Toluene/n-Heptane Mixture by O/W/O Type Emulsion Liquid Membrane(part 1) (O/W/O형 Emulsion 액체막에 의한 Toluene과 n-Heptane 혼합물의 분리(제1보))

  • Ju, Myung-Jong;Kim, Tae-Young;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.95-103
    • /
    • 1996
  • In the separation of toluene/n-heptane mixture by the emulsion type liquid membrane in an batch system, the effect of surfactant on the separation factor and membrane stability was studied over the surfactant concentration ranging form 0.1 to 1.5wt% at the contact time of 5 and 10 minutes. and the settling time of 5 and 10 minutes. The surfactant used was sodium lauryl sulfate. The separation factor reached its maximum value at the surfactant concentration of 0.5wt% for surfantant. It was found that the percentage of membrane breakup reached its minimum values and the separation factor showed its maximum value at the surfactant concentration of 0.5wt%. which confirmed that efficient separation could be effect when emulsion liquid membrane was stable because of low membrane breakup.

A Study on the Crystallization of Low Density Polyethylene Microparticles in $n$-Dodecanol Solution ($n$-Dodecanol 용액에서 저밀도폴리에틸렌 마이크로 입자 결정화에 관한 연구)

  • Park, Keun-Ho;Jang, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.306-312
    • /
    • 2011
  • In this study, we are crystallized to the low density polyethylene (LDPE) micro-particles in $n$-dodecanol solution by thermally induced phase separation(TIPS) method. The Low density polyethylene micro-particles is used in a wide variety of polymer coatings and industrial application. The utility of that for a particular application depends on a number of factors such as the particle size and distribution, and chemical composition of the materials. However, there are still needs for new methods of preparation which will provide the structure with unique sizes. The widely used processes for micro-size particles are crystallization method and thermally induced phase separation. TIPS process based on the phase separation mechanism was performed for the LDPE system which undergoes liquid-solid phase separation. Effects of various operating parameters were examined on the structure variation of the particles. Professionality, take-up speed and crystallization rate depended on temperature and concentration of polymer in solution.

The Observation of Nucleation & Growth during Water Vapor Induced Phase Inversion of Chlorinated Poly(vinyl chloride) Solution using SALS

  • Jang, Jae Young;Lee, Young Moo;Kang, Jong Seok
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • Small angle light scattering (SALS) and field emission scanning electron microscope (FE-SEM) have been used to investigate the effects of alcohol on phase separation of chlorinated poly(vinyl chloride) (CPVC)/tetrahydrofuran (THF)/alcohol (9/61/30 wt%) solution during water vapor induced phase separation. A typical scattering pattern of nucleation & growth (NG) was observed for all casting solutions of CPVC/THF/alcohol. In the case of the phase separation of CPVC dope solution containing 30 wt% ethanol or n-propanol, the demixing with NG was observed to be heterogeneous. Meanwhile, the phase separation of CPVC dope solution with 30 wt% n-butanol was found to be predominantly homogeneous NG. Although the different phase separation behavior of NG was observed with types of alcohol additives, the resultant surface morphology had no remarkable differences. That is, even though the NG process by water vapor is either homogeneous or heterogeneous, this difference does not play a main role on the final surface morphology. However, it was estimated from the result of hydraulic flux that the phase separation by homogeneous NG provided the membrane geometry with lower resistance in comparison with that by heterogeneous one.

Effect of Surfactant on the Separation of Toluene/n-Heptane Mixture by O/W/O Type Emulsion Liquid Membrane (O/W/O형 에멀젼 액체막에 의한 Toluene과 n-Heptane 혼합물의 분리에 있어서 계면활성제의 영향)

  • Kim, Tae-Young;Lee, Ju-Sang;Choi, Sung-Ok;Nam, Ki-Dae;Park, Sang-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.95-103
    • /
    • 1999
  • In the separation of toluene/n-heptane mixture by the emulsion type liquid membrane in a batch system, the effect of surfactants on the separation factor and membrane stability were studied over the surfactant concentration ranging from 0.1 to 1.5 wt% at the contact time of 5 and 10 minutes and the settling time 5 and 10 minutes. The surfactants used were triethanol amine lauryl sulfate. The separation factor reached its maximum value at the surfactant concentration of 0.5 wt%. It was found that the percentage of membrane breakup reached its minium values and the separation factor showed its maximum value at the surfactant concentration of 0.5 wt%, which confirmed that efficient separation could be effect when emulsion liquid membrane were stable because of low membrane break up.

A Separation of manganese (II) and cobalt (II) ions by D2EHPA/TBP-immobilized PolyHIPE membrane

  • Chen, Jyh-Herng;Mai, Le Thi Tuyet
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • The D2EHPA/TBP co-extractants immobilized PolyHIPE membrane can be used for the selective separation of Mn (II) from Co (II). By solvent-nonsolvent method, D2EHPA/TBP co-extractants can be effectively immobilized into PolyHIPE membrane. The pore structure of PolyHIPE membrane and the presence of TBP enhance the stability of immobilized co-extractants. The optimal operating conditions for the separation of Mn (II) and Co (II) are feeding phase at pH 5.5, sulfuric acid concentration in the stripping phase of about 50 g/L and stirring speed at 400 rpm. The D2EHPA/TBP co-extractants ratio of 5:1 shows synergetic effect on Mn/Co separation factor about 22.74. The removal rate and recovery rate of Mn (II) is about 98.4 and 97.1%, respectively, while for Co (II) the transport efficiency is insignificant. The kinetic study of Mn (II) transport shows that high initial flux, $J_f^o=80.1({\mu}mol/m^2s)$, and maxima stripping flux, $J_s^{max}=20.8({\mu}mol/m^2s)$, can be achieved with D2EHPA/TBP co-extractants immobilized PolyHIPE membrane. The stability and reusability study shows that the membrane can maintain a long term performance with high efficiency. High purity of Co (II) and Mn (II) can be recovered from the feeding phase and stripping phase, respectively.