• Title/Summary/Keyword: Separation ratio

Search Result 1,111, Processing Time 0.032 seconds

Study on Effect of Phase Separation of Bioethanol Blends Fuel by Water Contents (수분 함량에 따른 바이오에탄올혼합 연료유의 상 분리 영향성에 관한 연구)

  • KIM, JAE-KON;JEON, CHEOl-HWAN;MIN, KYONG-IL;KIM, SHIN;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.712-720
    • /
    • 2016
  • When bioethanol and water are mixed at a proper ratio, phase separation can occur because of the immiscibility of biobutanol with water. Phase separation in bioethanol blends fuels is a major problem for gasoline vehicle users due to effect of octane number and component corrosion. Thus, in this study, the phase separation of bioethanol was examined effect of bioethanol blends (E3 (3 vo.% bioethanol in gasoline), E5 and E10) in presence of water. The effect were evaluated behavior with phase separation test, simulation test of fuel tank in gas station according to water addition volume and it was investigated change of water content, bioethanol content and octane number for gasoline phase in bioethanol blends (E3, E5 and E10) every 1 week after water addition. The E3 occurred phase separation more easily than the E5 and E10 in small water contents because solubility of water on ethanol content difference in gasoline-ethanol. It was kept a initial level of water content, bioethanol content, and octane number by repeated sample replacing in simulation test of fuel tank.

Basic study on high gradient magnetic separation of nano beads using superconducting magnet for antibody purification

  • Jeongtae Kim;Insung Park;Gwantae Kim;Myunghwan Sohn;Sanghoon Lee;Arim Byun;Jin-sil Choi;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.60-64
    • /
    • 2023
  • The manufacturing process of antibody drugs comprises two main stages: the upstream process for antibody cultivation and the downstream process for antibody extraction. The domestic bio industry has excellent technology for the upstream process. However, it relies on the technology of foreign countries to execute downstream process such as affinity chromatography. Furthermore, there are no domestic companies capable of producing the equipment for affinity chromatography. High gradient magnetic separation technology using a high temperature superconducting magnet as a novel antibody separation and purification technology is introduced to substitute for the traditional technology of affinity chromatography. A specially designed magnetic filter was equipped in the bore of the superconducting magnet enabling the continuous magnetic separation of nano-sized paramagnetic beads that can be used as affinity magnetic nano beads for antibodies. To optimize the magnetic filter that captures superparamagnetic nanoparticles effectively, various shapes and materials were examined for the magnetic filter. The result of magnetic separation experiments show that the maximum separation and recovery ratio of superparamagnetic nanoparticles are 99.2 %, and 99.07 %, respectively under magnetic field (3 T) and flow rate (600 litter/hr).

New Technologies for Enhancing Particles Separation Efficiency in Coagulation and Filtration (입자분리효율을 높이기 위한 새로운 기술)

  • Kunio, Ebie;Jang, Il-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.254-269
    • /
    • 2004
  • Polysilicato-iron coagulant (PSI) is receiving attention in Japan as a substitute for aluminum-based coagulants. In the first part of this article, coagulation, sedimentation and filtration experiments were carried out using kaolin clay particles as the turbidizing material and four types of PSI with various molar ratios of polysilicic acid to ferric chloride (Si/Fe ratio). Results demonstrate that use of a PSI with a high Si/Fe ratio can cause a more dramatic decrease in treated water turbidity but a higher suction time ratio (STR) than when PACl is used. However, optimization by increasing the rapid agitation strength GR is found to greatly improve the STR. In addition, the series of filtration experiments verified that optimization of GR is greatly effective in controlling rapid increases in filter head loss, and also formation of a thin aging layer in the upper part of the filter bed by slow-start filtration is effective in improving filtered water turbidity over the entire filtration process. The second part of this article describes two innovative filtration techniques to increase the particle separation efficiency; (1) coagulant-coated filter medium by enhancing the electrical potential of the surface of the filter medium, and (2) coagulant dosing in influent by controlling the electrical potential of particles entering the filter layer. From the results of the various filtration experiments using a pilot plant, these two techniques were found to be very effective to reduce the effluent water turbidity from the start to the end of a filter run. Moreover, in the filtration experiments using these two methods simultaneously, higher removal efficiency of approximately 3-log (99.7%) was realized, resulting that the finished water turbidity was accordingly reduced to 0.004mg/L.

Preparation and Characterization of Highly Permeable Facilitated Olefin Transport Nanocomposite Membrane Utilizing 7,7,8,8-tetracyanoquinodimethane (7,7,8,8-Tetracyanoquinodimethane를 활용한 고투과성 올레핀 촉진수송 나노복합체 분리막 제조 및 특성 분석)

  • Hwang, Jeonghyun;Lee, Eun Yong;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.417-422
    • /
    • 2014
  • The poly(ethylene oxide) (PEO)/Ag Nanoparticles (NPs)/7,7,8,8-Tetracyanoquinodimethane (TCNQ) membrane was fabricated to obtain highly permeable facilitated olefin transport nanocomposite membrane, compared with PEO/Ag NPs/p-Benzoquinone (p-BQ) membrane. Polymer matrix, PEO and silver nanoparticle precursor $AgBF_4$ were fixed at 1 : 0.4 mole ratio and electron acceptor TCNQ content was controlled variously. And the best olefin separation performance was obtained at 1/0.4/0.004 mole ratio, and long-term separation performance was measured at this ratio. As a result, mixed-gas permeance decreased from 23 to 6 GPU, and selectivity decreased from 6 to 2 (propylene/propane) after 32 hours.

Conditions of Hemoglobin Hydrolysis and Separation for the Production of Enriched Heme-iron (고농도 Heme-iron의 생산을 위한 Hemoglobin의 가수분해 및 분리 조건)

  • Kang, In-Kyu;In, Man-Jin;Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.219-223
    • /
    • 2001
  • Effects of hemoglobin (Hgb) concentration and degree of hydrolysis (DH) of Hgb on the separation of heme-iron were examined to produce highly enriched heme-iron from Hgb hydrolysate. Separation efficiency of Hgb hydrolysate with different DH was studied at wide pH range (pH $1.0{\sim}11.0$). Separation efficiency expressed as heme-iron/peptide ratio increased with decreasing Hgb concentration. When 5% Hgb (pH 10.0) was hydrolyzed using commercially available Esperase for 5 h at $50^{\circ}C$, DH was 25%. The precipitation of heme-iron-enriched peptides were remarkably high at pH range $3{\sim}6$. Optimal pH range for heme-iron with high heme-iron/peptide ratio shifted to acidic pH with increasing DHs of Hgb. The enriched heme-iron fraction in the precipitates showed a single band through urea-SDS-PAGE, with a molecular mass of 1 kDa. In the dry heme-iron product produced in a pilot bioreactor, content of heme-iron and heme-iron/peptide ratio were 27.1 and 38.7%, respectively, and production yield was 9.3%.

  • PDF

Design of Counter current Extraction Process for the Separation of [Pr, Nd, Sm]/[La] using Cyanex 572 (Cyanex 572를 사용하여 [Pr, Nd, Sm]/[La]분리에 대한 향류추출공정 설계)

  • Lee, Joo-eun;So, Hong-Il;Jang, In-Hwan;Ahn, Jae-Woo;Kim, Hong-in;Lee, Jin-young
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.50-56
    • /
    • 2018
  • For the purpose of optimizing the counter current extraction process for separation of [Pr, Nd, Sm] group and [La] in mixed solution using Cyanex 572 as an extractant, the theory of Xu Guangxian was derived for calculating the optimized extraction factors. From the basic batch test result, the separation factor was 16.80 at extraction process and 21.48 at scrubbing process, and the loading capacity of 1.0 M Cyanex 572 was 0.12 M of rare earth element. The process parameters such as the stage number at extraction and scrubbing process, the flow rate ratio of feed and solvent solution can be calculated using an equation of optimum extraction ratio proposed by Xu Guangxian. From the result of calculation, 7 extraction stages and 4 scrubbing stages were required for rare earth separation, and the flow rate ratio of feed solution, solvent solution, scrubbing solution was 25 : 5.67 : 12.27.

A Hydraulic and Feasibility Study of New Tower Internal in Gas Processing Plants

  • Choo Chang-upp
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • A new tower internal, which is called CSE, is presented. The CSE is composed of a nozzle perforated in its bottom along the entire periphery and equipped with a multi vane axial swirler at the inlet and hollow cylindrical separator at the outlet of the nozzle. According to the experimental work for obtaining the necessary hydraulic information of the CSE, which is used for preliminary design of a separation column, the CSE showed a stable operation over the wide rage of gas/liquid ratio. However, it caused large pressure drop due to the high gas velocity which should carry liquid droplets through the element. The high pressure drop may cause problems in energy recovery and the application of the CSE can be limited to the high pressure columns. Assuming that the tray efficiency of the CSE is the same with the existing separation columns, the results of the column design showed the size reduction of the column diameters by 30 to $40\%$ and investment cost saving, depending on operating conditions. The application of the CSE to separation column may also contribute to the de-bottlenecking the existing column.

Post-Processing with Frequency Domain Wiener Filter for Blind Source Separation

  • Park, Keun-Soo;Park, Jang-Sik;Kim, Hyun-Tae;Son, Kyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.36-42
    • /
    • 2006
  • In this paper, a novel post processing using Wiener filtering technique is proposed to p rm further interference reduction in FDICA. Using the proposed method, the target signal components are remained with little attenuation while the interference components are drastically suppressed. The results of experiments show that the proposed method achieves a reduction of the residual crosstalk. Compared to the NLMS method, the proposed method has slightly better separation performance in SIR, and even requires much less computational complexity.

High Throughput Magnetic Separation for Human DNA by Aminosilanized Iron Oxide Nanoparticles (아미노실란화 철산화물 나노입자를 이용한 Human DNA의 초고속 자성분리)

  • Kang, Ki-Ho;Chang, Jeong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.605-609
    • /
    • 2008
  • This work describes the preparation of functionalized magnetic nanoparticles(MNPs) and their bioapplication to human DNA separation. Silica coated MNPs were prepared by changing the volume ratio of tetraethyl orthosilicate(TEOS) for controlled coating thickness on the original nanoparticle of MNPs. The sol-gel process in silica coating on MNPs surface was adapted for relatively mild reaction condition, low-cost, and surfactant-free. And then amino functionalized magnetic nanoparticles were synthesized using amine groups as surface modifiers. The result of adsorption efficiency for human DNA with amino-functionalized silica coated MNPs was calculated as a function of the number of amine groups.

Plume Interference Effect on a Missile Body and Its Control (미사일 동체에서 발생하는 Plume 간섭 효과와 제어)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong;Szwaba, Ryszard
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1730-1735
    • /
    • 2003
  • The plume-induced shock wave is a complex phenomenon, consisting of plume-induced boundary layer separation, separated shear layer, multiple shock waves, and their interactions. The knowledge base of plume interference effect on powered missiles and flight vehicles is not yet adequate to get an overall insight of the flow physics. Computational studies are performed to better understand the flow physics of the plume-induced shock and separation particularly at high plume to exit pressure ratio. Test model configurations are a simplified missile model and two rounded and porous afterbodies to simulate moderately and highly underexpanded exhaust plumes at the transonic/supersonic speeds. The result shows that the rounded afterbody and porous wall attached at the missile base can alleviate the plume-induced shock wave phenomenon, and improve the control of the missile body.

  • PDF