• Title/Summary/Keyword: Separation Scheme

Search Result 259, Processing Time 0.025 seconds

A Hybrid CBPWM Scheme for Single-Phase Three-Level Converters

  • Wang, Shunliang;Song, Wensheng;Feng, Xiaoyun;Ding, Rongjun
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.480-489
    • /
    • 2016
  • A novel hybrid carrier-based pulse width modulation (CBPWM) scheme that combines unipolar and dipolar modulations is proposed for single-phase three-level rectifiers, which are widely applied in railway traction drive systems. The proposed CBPWM method can satisfy the volt-second balancing principle in the complete modulation index region through overmodulation compensation. The modulation scheme features two modulation modes: unipolar and dipolar. The operation range limits of these modulation modes can be modified by changing the separation coefficient. In comparison with the traditional unipolar CBPWM, the proposed hybrid CBPWM scheme can provide advantageous features, such as lower high-order harmonic distortion of the line current and better utilization of switching frequency. The separation coefficient value is optimized to achieve the maximum utilization of these advantages. The experimental results verify the feasibility and effectiveness of the proposed hybrid CBPWM scheme.

A Computational Study on the Unsteady Lateral Loads in a Rocket Nozzle

  • Nagdewe, Suryakant;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.289-292
    • /
    • 2008
  • Highly over-expanded nozzle of the rocket engines will be excited by non-axial forces due to flow separation at sea level operations. Since rocket engines are designed to produce axial thrust to power the vehicle, non-axial static and/or dynamic forces are not desirable. Several engine failures were attributed to the side loads. Present work investigate the unsteady flow in an over-expanded rocket nozzle in order to estimate side load during a shutdown/starting. Numerical computations has been carried out with density based solver on multi-block structured grid. Present solver is explicit in time and unsteady time step is calculated using dual time step approach. AUSMDV is considered as a numerical scheme for the flux calculations. One equation Spalart-Allmaras turbulence model is selected. Results presented here is for two nozzle pressure ratio i.e. 100 and 20. At 100 NPR, restricted shock separation (RSS) pattern is observed while, 20 NPR shows free shock separation (FSS) pattern. Side load is observed during the transition of separation pattern at different NPR.

  • PDF

CFD ANALYSIS ON AIRCRAFT STORE SEPARATION VALIDATION (무장분리 안전성을 위한 전산해석)

  • Jueng, H.S.;Yoon, Y.H.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.14-16
    • /
    • 2007
  • A critical problem in the integration of stores into new and existing aircraft is the safe separation of the stores from the aircraft at a variety of flight conditions representative of the aircraft flight regime. Typically, the certification of a particular store/aircraft/flight condition combination is accomplished by a flight test. Flight tests are very expensive and do expose the pilot and aircraft to a certain amount of risk. Wind tunnel testing, although less expensive than flight testing, is still expensive. Computational Fluid Dynamics(CFD) has held out the promise of alleviating expensive and risk by simulating weapons separation computationally. The forces and moments on a store at carriage and at various points in the flow field of te aircraft can be computed using CFD applied to the full aircraft and store geometry. This study needs full dynamic characteristics study and flow analysis for securing store separation safety. Present study performs dynamic simulation of store separation with flow analysis using Chimera grid scheme which is usually used for moving simulations.

  • PDF

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

  • Sutrakar, Vijay Kumar;Subramanya, N.;Mahapatra, D. Roy
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.143-168
    • /
    • 2015
  • Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

A New Mobile Watermarking Scheme Based on Display-capture

  • Bae, Jong-Wook;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.815-823
    • /
    • 2009
  • Most of existing watermarking schemes insert and extract a watermark, focusing on the visual conservation of an original image. However, existing watermarking schemes could be difficult for a watermark detection in case of various distortion caused by display-capture devices. Therefore, we propose a new display-capture based mobile watermarking scheme. The proposed watermarking scheme is a new concept for embedding a watermark, which uses the generated image instead of a given original image. For effective watermark decoding, we also present a method for detecting the background image whose error bit can not be corrected because of various heavy distortion and for avoiding it from the decoding process. For this scheme, we adopt distortion coefficients of camera calibration when we separate a background image from a captured image. For finding available correction bits of ECC through the decoding process, we capture 30,000 images and then calculate the separation ratio of a background image and the average error bits per an image. As experimental result, the separation ratio of a background image is about 96.5% in 30,000 captured image. And the false alarm ratio shows about $5.18{\times}10^{-4}$ in the separated background image. And also we can confirm the availability of real-time processing because the mean execution time is about 82ms per an image for capturing and decoding.

  • PDF

Network-based Mobility Control in Mobile LISP Networks (이동 LISP망에서 네트워크 기반 이동성 제어 기법)

  • Choi, Sang-Il;Kim, Ji-In;Koh, Seok-Joo
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.339-342
    • /
    • 2011
  • This paper proposes a network-based mobility control scheme in wireless/mobile networks, which is based on the Locator-Identifier Separation Protocol (LISP). Compared to the existing LISP mobility scheme, the proposed scheme is featured by the following two points: 1) each LISP Tunnel Router (TR) is implemented at the first-hop access router that mobile nodes are attached to, and 2) for handover support, the LISP Routing Locator (RLOC) update operation is performed between Ingress TR and Egress TR. By numerical analysis, it is shown that the proposed scheme can reduce the handover latency much more than the other candidate schemes.

COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION

  • Lee, Seunggyu;Lee, Chaeyoung;Lee, Hyun Geun;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • The Cahn-Hilliard equation was proposed as a phenomenological model for describing the process of phase separation of a binary alloy. The equation has been applied to many physical applications such as amorphological instability caused by elastic non-equilibrium, image inpainting, two- and three-phase fluid flow, phase separation, flow visualization and the formation of the quantum dots. To solve the Cahn-Hillard equation, many numerical methods have been proposed such as the explicit Euler's, the implicit Euler's, the Crank-Nicolson, the semi-implicit Euler's, the linearly stabilized splitting and the non-linearly stabilized splitting schemes. In this paper, we investigate each scheme in finite-difference schemes by comparing their performances, especially stability and efficiency. Except the explicit Euler's method, we use the fast solver which is called a multigrid method. Our numerical investigation shows that the linearly stabilized stabilized splitting scheme is not unconditionally gradient stable in time unlike the known result. And the Crank-Nicolson scheme is accurate but unstable in time, whereas the non-linearly stabilized splitting scheme has advantage over other schemes on the time step restriction.

Design and control of extractive distillation for the separation of methyl acetate-methanol-water

  • Wang, Honghai;Ji, Pengyu;Cao, Huibin;Su, Weiyi;Li, Chunli
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2336-2347
    • /
    • 2018
  • The azeotrope of methyl acetate methanol and water was isolated using extractive distillation with water as entrainer. The pressure-swing extractive distillation (PSED) process and vapor side-stream distillation column (VSDC) with the rectifier process were designed to separate the methyl acetate, methanol and water mixture. It was revealed that the VSDC with the rectifier process had a reduction in energy consumption than the PSED process. Four control schemes of the two process were investigated: Double temperature control scheme (CS1), $Q_R/F$ feedforward control of reboiler duty scheme for PESD (CS2), $Q_R/F$ feedback control scheme for VSDC (CS3), the feedback control scheme of sensitive plate temperature of side-drawing distillation column to dominate the compressor shaft speed (CS4). Feed flow and composition disturbance were used to evaluate the dynamic performance. As a result, CS4 is a preferable choice for separation of methyl acetate-methanol-water mixture. A control scheme combining the operating parameters of dynamic equipment with the control indicators of static equipment was proposed in this paper. It means using the sensitive plate temperature of side-drawing column to control the compressor shaft speed. This is a new control scheme for extractive distillation.

A Study on the Separation Efficiency of In-line Type Subsea Oil-water Separator (In-line형 심해 유수분리기의 분리 효율에 관한 연구)

  • Kim, Hyun-Ji;Kim, Gwi-Nam;Kim, Young-Ju;Woo, Nam-Sub;Huh, Sun-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • The implementation of subsea separation and liquid boosting is becoming a common development scheme for the exploration of deep water fields. Subsea separation is an attractive and economic solution to develop deep offshore fields producing fluid without hydrate or wax. A subsea separator can avoid or simplifying costly surface platforms of floating vessels, as well as being an efficient tool to enhance hydrocarbon production. Subsea separation system should be reliable to ensure successful operation in a wide range of 3-phase flow regime. In this study, multiphase flow characteristics inside in-line type subsea separation system are investigated for the design of subsea separation system.

Large Eddy Simulation of Shock-Boundary Layer Interaction

  • Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.426-432
    • /
    • 2004
  • Large-Eddy Simulation (LES) is applied for the simulation of compressible flat plate boundary with Reynolds number up to 5 X 10$^{5}$ . Numerical examples include shock/boundary layer interaction and boundary layer transition, aiming future application to the analysis of transonic fan/compressor cascades. The present LES code uses hybrid com-pact/WENO scheme for the spatial discretization and compact diagonalized implicit scheme for the time integration. The present code successfully predicted the bypass transition of subsonic boundary layer. As for supersonic turbulent boundary layer, mean and fluctuation velocity of the attached boundary, as well as the evolution of the friction coefficient and the displacement thickness both upstream and downstream of the separation region are all in good agreement with experiment. The separation point also agreed with the experiment. In the simulation of the shock/laminar boundary layer interaction, the dependence of the transition upon the shock strength is reproduced qualitatively, but the extent of the separation region is overpredicted. These numerical examples show that LES can predict the behavior of boundary layer including transition and shock interaction, which are hardly managed by the conventional Reynolds-averaged Navier-Stokes approach, although there needs to be more effort before achieving quantitative agreement.

  • PDF