• Title/Summary/Keyword: Separation/recovery

Search Result 753, Processing Time 0.031 seconds

TiO2 Reuse and Recovery from the Photocatalytic Oxidation of Cu(II)-EDTA using TiO2/UV-A System (TiO2/UV-A 시스템을 이용한 Cu(II)-EDTA의 광촉매 산화반응에서 TiO2 재사용 및 회수)

  • Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.84-91
    • /
    • 2005
  • $TiO_2-catalyst$ suspensions work efficiently in Photocatalytic oxidation (PCO) for wastewater treatment. Nevertheless, once photocatalysis is completed, separation of the catalyst from solution becomes the main problem. The PCO of Cu(II)-EDTA was studied to determine the reusability of the titanium dioxide catalyst. Aqueous solutions of $10^{-4}M$ Cu(II)-EDTA were treated using illuminated $TiO_2$ particles at pH 6 in a circulating reactor. $TiO_2$ was reused in PCO system for treatment of Cu(II)-EDTA comparing two procedures: reuse of water and $TiO_2$ and reuse of the entire suspension after PCO of Cu(II)-EDTA. The results are as follows; (i) Photocatalytic efficiency worsens with successive runs when catalyst and water are reused without separation and filtration, whereas, when $TiO_2$ is separated from water, the reused $TiO_2$ is not deactivated. (ii) The $TiO_2$ mean recovery (%) with reused $TiO_2$ was 86.4%(1.73g/L). Although the mean initial degradation rate of Cu(II)-EDTA and Cu(II) was lower than that using fresh $TiO_2$, there was no significant change in the rate during the course of the three-trial experiment. It is suggested that Cu(II)-EDTA could be effectively treated using an recycling procedure of PCO and catalyst recovery. (iii) However, without $TiO_2$ separation, the loss of efficiency of the PCO in the use of water and $TiO_2$ due to Cu(II), DOC remained from previous degradation and Cu(II)-EDTA added to the same suspension was observed after 2 trials, and resulted in the inhibition of the Cu(II)-EDTA, Cu(II) and DOC destruction.

Cryptosporidium Oocyst Detection in Water Samples: Floatation Technique Enhanced with Immunofluorescence Is as Effective as Immunomagnetic Separation Method

  • Koompapong, Khuanchai;Sutthikornchai, Chantira;Sukthana, Yowalark
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.4
    • /
    • pp.353-357
    • /
    • 2009
  • Cryptosporidium can cause gastrointestinal diseases worldwide, consequently posing public health problems and economic burden. Effective techniques for detecting contaminated oocysts in water are important to prevent and control the contamination. Immunomagnetic separation (IMS) method has been widely employed recently due to its efficiency, but, it is costly. Sucrose floatation technique is generally used for separating organisms by using their different specific gravity. It is effective and cheap but time consuming as well as requiring highly skilled personnel. Water turbidity and parasite load in water sample are additional factors affecting to the recovery rate of those 2 methods. We compared the efficiency of IMS and sucrose floatation methods to recover the spiked Cryptosporidium oocysts in various turbidity water samples. Cryptosporidium oocysts concentration at 1, $10^1$, $10^2$, and $10^3$ per $10{\mu}l$ were spiked into 3 sets of 10 ml-water turbidity (5, 50, and 500 NTU). The recovery rate of the 2 methods was not different. Oocyst load at the concentration < $10^2$ per 10 ml yielded unreliable results. Water turbidity at 500 NTU decreased the recovery rate of both techniques. The combination of sucrose floatation and immunofluorescense assay techniques (SF-FA) showed higher recovery rate than IMS and immunofluorescense assay (IMS-FA). We used this SF-FA to detect Cryptosporidium and Giardia from the river water samples and found 9 and 19 out of 30 (30% and 63.3%) positive, respectively. Our results favored sucrose floatation technique enhanced with immunofluorescense assay for detecting contaminated protozoa in water samples in general laboratories and in the real practical setting.

Simulation of CH4/CO2 Separation Process Using 2-Stage Hollow Fiber Membrane Modules (메탄/이산화탄소 2단 중공사 분리막 분리공정 전산모사)

  • Cha, Gyoung Hwan;Kim, Joeng Hoon;Lee, Yongtaek
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.365-371
    • /
    • 2016
  • A numerical analysis was performed for a separation of carbon dioxide and methane using 2-staged, membrane process where two polysulfone hollow fiber membrane modules were connected to provide both the methane concentration richer than 95% and the recovery higher than 90% using the recycled flows. The Compaq Visual Fortran 6.6 software was utilized for the numerical simulation. Both the methane concentration and the recovery % of methane could be successfully predicted as the function of the operating conditions. As the feed pressure, the methane concentration, and the flow rate increase, the methane concentration in a product is also found to increase and the recovery of methane is found to decrease.

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Cell separation from high density culture broths of Alcaligenes eutrophus by using Al-based coagulants (Alcaligens eutrohus 고농도 배양액으로부터 알루미늄(Al)계 응집제를 이용한 세포분리)

  • 조경숙;류희욱;정현우;곽종운;장용근
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • Cell recovery from high cell density broths of Alcaligenes eutrophus by pretreatment with aluminum-based coagulants such as aluminum sulfate, polyaluminum hydrooxide chloride silicate (PACS), and polyaluminum hydrooxide chloride (Hi-PAX) was carried out. Cells coagulated with coagulants could be successfully recovered above 95-99% by centrifugation or filtration. The optimum initial pH of fermentation broths for cell recovery was in the range of 10 to 12. Optimum coagulants dosage for cell recovery increased with increasing of cell concentrations (21-160 g/L). The optimum coagulant dosages to recover cells with more than 95% cell recovery by centrifugation for the cell concentrations ranged 21-160 g/L were as follows: aluminum sulfate, 416-1708 mg Al/L; PACS, 211-826 mg Al/L; Hi-PAX, 320-960 mg Al/L. At optimum conditions for the coagulation of cells, centrifugal forces for 95% of cell recovery were dependent on the cell concentration. The centrifugal forces at 82 g/L and 160 g/L of cell concentration were only 45${\times}$g and 1600${\times}$g, respectively.

  • PDF

Buffer-Optimized High Gradient Magnetic Separation: Target Cell Capture Efficiency is Predicted by Linear Bead-Capture Theory

  • Waseem, Shahid;Udomsangpetch, Rachanee;Bhakdi, Sebastian C.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.125-132
    • /
    • 2016
  • High gradient magnetic separation (HGMS) is the most commonly used magnetic cell separation technique in biomedical science. However, parameters determining target cell capture efficiencies in HGMS are still not well understood. This limitation leads to loss of information and resources. The present study develops a bead-capture theory to predict capture efficiencies in HGMS. The theory is tested with CD3- and CD14-positive cells in combination with paramagnetic beads of different sizes and a generic immunomagnetic separation system. Data depict a linear relationship between normalized capture efficiency and the bead concentration. In addition, it is shown that key biological functions of target cells are not affected for all bead sizes and concentrations used. In summary, linear bead-capture theory predicts capture efficiency ($E_t$) in a highly significant manner.

Release of Cu from SDS micellar solution using complexing agents

  • 김호정;백기태;김보경;이율리아;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.307-310
    • /
    • 2004
  • Micellar enhanced ultrafiltration (MEUF) is a surfactant-based separation process and it can remove heavy metal ions from aqueous stream effectively. However, it is necessary to recover and reuse surfactants for economic feasibility because surfactant is expensive. Foam fractionation was investigated for both anionic and cationic surfactant recovery. Chelating agent such as ethylenediaminetetraacetic acid (EDTA) was studied for the separation of heavy metals from surfactant solution. Anionic surfactants bound with heavy metals can be recovered by lowering pH (acidification). In this study, citric acid and imminodiacetic acid (IDA) were applied to release copper from sodium dodecyl sulfate (SDS) micellar solution and compared with EDTA. Precipitation of copper by ferricynide and sodium sulfide were also investigated. As a result, ca. 100 % of copper was released from SDS micellar solution by 5 mM of EDTA and citric acid. And 3.3 mM of ferricyanide formed precipitate with 82.7 % of copper. 5 mM of IDA and sodium sulfide released or formed precipitate 82.5 % and 58.9 % of copper, respectively. Citric acid is harmless to environments and ferricyanide precipitates with Cu easily. Therefore, it is considered that citric acid and ferricyanide have competiveness over a famous chelating agent, EDTA, for the separation of Cu from SDS solution.

  • PDF

Rapid Separation of Cellular Cyclosophoraoses Produced by Rhizobium Species

  • Seo, Dong-Hyuk;Lee, Sang-Hoo;Park, Hey-Lin;Kwon, Tae-Jong;Jung, Seun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.522-525
    • /
    • 2002
  • A very rapid and efficient separation technique for cellular rhizobial cyclosophoraoses was developed based on fractional precipitation and partition chromatography. Cyclosophoraoses are known to function in the osmotic regulation and root nodule formation of legumes during the nitrogen fixation process. Cyclosophoraoses are produced as unbranched cyclic (1longrightarrow12)-${\beta}$-D-glucans in Agrobacterium or Rhizobium species. Recent research has shown that cyclosophoraoses can form inclusion complexation with various unstable or insoluble guest chemicals, thereby implying great potential for industrial application. Typical separation of pure cellular cyclosophoraoses has been so far carried out by several time-consuming steps, including size exclusion, anion exchange, and desalting liquid chromatographies, with a relatively poor recovery. However, the proposed method demonstrated that the successive application of fractional ethanol precipitation and one step of silica gel-based flash column chromatography was enough to simultaneously purify neutral or anionic forms of cyclosophoraoses. This novel technique is very rapid and provides a high recovery.

Separation of X- and Y-Bearing Spermatozoa III. Separation of bull spermtozoa by Sephadex Gel Filtration (X-정자와 Y-정자의 분이에 관한 연구 III. Sephadex Gel 여과에 의한 우정자의 분이)

  • 이주영;엄기붕;고대환;김종배;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.12 no.1
    • /
    • pp.24-30
    • /
    • 1988
  • These experiments were carried out to develop new techniques for In Vitro separatin of X-and Y-bearing spermatozoa. The bull semen was applied to the various Gel-Columns filled with swellen Sephadex G-50 Fine and then elutriated wtih Locke solution (elutriation rate; 1ml/3-4min., 1ml/1-2min.). Elutriated solution was fractionated into 1ml by automatic Fraction Collector and spermatozoa included in each fraction were subjected to the estimation of viability and recovery rate, and to B-body test. The results obtained in these experiments were summarized as follows: 1. When the column size and the elutriation rate were adjusted to 15$\times$1.6cm and 1ml/3-4min., respectively, the highest sperm concentration was obtained from the 8th to the 12th fraction. 2. As a trend, the viability of spermatozoa was improved by chromatography, and the degree of improvement ranged 5 to 10 percentage. 3. The average recovery rate of spermatozoa applied to column was 73.2 percentage and ranged 52.6 to 81.3 percentage. 4. The lowest rate of B-body bearing spermatozoa following chromatography was obtained when the column size and the elutriation rate were adjusted to 15$\times$0.8cm and 1ml/1-2min., respectively.

  • PDF

Development of Recycling Technique of Mill Reject Produce using Ttiboelectrostatic Separation (마찰하전형정전선별법을 이용한 Mill Reject 산물 재활용 기술개발)

  • 전호석;한오형;신선명;윤로한
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.20-27
    • /
    • 2002
  • This study was to develop the triboelectrostatic separation technique to recycle the coal from about 20% of mill reject products remained by grinding process in the coal thermoelectric power plant. In this study, we get a test results that can product the cleaned coal of 15% ash content and 66.23% recovery from mill reject of 47% ash content. And then, from the result of the releases analysis, we proved the excellence of treatment method, after showing the treament processing which is able to get 80% of recovery of coal from 20% of ash content demanded in the power plant.