• Title/Summary/Keyword: Separated waste

Search Result 235, Processing Time 0.022 seconds

Production of Phytoncide from Korean Pine Cone Waste by Steam Distillation (잣송이 부산물로부터 수증기 증류법에 의한 피톤치드의 추출)

  • Kim, Bae yong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.648-658
    • /
    • 2015
  • Extraction of phytoncide oil from korea pine cone waste without damaging the pine cone tree itself was investigated using a steam distillation method. Also various components in the extracted phytoncide oil were separated using a column chromatography method. The extraction of phytoncide oil was effectively proceeded, and the maximum production yield of phytoncide oil could be obtained under $100^{\circ}C$ of distillation temperature and within 30 minute of distillation time. According to chemical analysis, it was found that the phytoncide oil from korea pine cone waste was consisted of more than 12 components such as ${\alpha}$-pinene, ${\beta}$-pinene, D-limonene, as main components. In addition, the aqueous hydrogel containing other components such as verbenone, ${\alpha}$-terpinieol, fenchol, different from components of phytoncide oil itself could be obtained through the steam distillation.

A Study on Making of High-Purity Ferro-manganese from $Mn_3O_4$ Waste Dust ($Mn_3O_4$ 분진으로부터 고순도 훼로망간 제조에 관한 연구)

  • Kim, Youn-Che;Song, Young-Jun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.135-139
    • /
    • 2011
  • In order to make high-purity ferro-manganese from $Mn_3O_4$ waste dust, the application of aluminothermite process to the reduction of the waste dust was investigated. The mixture from $Mn_3O_4$ dust as metallic source and Al metal powder as the reductant ignited, and reduced with an extremely intense exothermic reaction. The rapid propagation of the aluminothermite reaction occurred spontaneously and stably by ignition of the mixture. The Manganese having some alloy elements emerged as liquids due to the high temperatures reached up to about $2,500^{\circ}C$ and separated from the liquid by their differences of specific gravity. The result of thermite reaction showed the fact that can be obtained high purity ferro-manganese which have over about 90% of manganese content and lower impurities such as C, P, S than those of KS D3712 specification. The recovery of manganese from $Mn_3O_4$ dust was lower level of about 65% than about 75% from manganese ore by electric furnace process, that is due to spatter loss because of its extremely intense thermite reaction. But it will be improved by the process designed to provide CaO as the cooler or to use the Al metal powder having larger particle size distribution.

The Analysis and Isolation of Component from Liquefied Wastepaper (폐지 용액화물로부터 성분분리 및 분석)

  • Chang, Jun-Pok;Yang, Jae-Kyung;Lim, Bu-Kug;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • This research was carried out to investigate the component isolation method from liquefied waste paper. and isolated component was analyzed by molecular weight distribution with gel chromatography and nitrobenzene-oxidation analysis. In the aspect of liquefaction ratio, wet defibration fiber are better than dry defibration fiber because of wet defiberation fiber was easy to access of chemical solution. The optimal liquefaction condition of waste paper was treated at 190℃ for 60 min(cresol 2 ㎖, water 4 ㎖, phosphoric acid 0.5 ㎖ based on waste paper 1 g). In the liquefied waste paper, lignin and carbohydrate were separated with two interfacial layer(cresol layer, water layer). In the chemical analysis of isolated lignin, molecular weight distribution of isolated lignin was below 1,000.

Characteristics of Solidified Cement of Electrokinetically Decontaminated Soil and Concrete Waste (동전기 제염 토양 및 콘크리트 폐기물의 시멘트 고화 특성)

  • Koo, Daeseo;Sung, Hyun-Hee;Hong, Sang Bum;Seo, Bum Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.83-91
    • /
    • 2018
  • While using an electrokinetic method to analyze the characteristics of cement solidification of radioactive wastes from decontaminated uranium soil and concrete, the compressive strength, pH, electrical conductivity, irradiation effects, and volume expansion were measured for the solidified cement specimens. The workability of cement solidified from radioactive waste was about 170-190%. After the solidified cement was irradiated, the compressive strength decreased by about 15%, but met the criteria ($34kgf{\cdot}cm^{-2}$) of KORAD (Korea Radioactive Waste Agent). According to the results of SEM-EDS for solidified cement, the aluminum phase was well combined with cement, while the calcium phase was separated from cement. The volume of solidified cement in radioactive wastes was dependent on the waste-to-cement ratio and the amount of water, and increased by about 30% under the conditions used in this study. Therefore, it was concluded that permanent disposal of electrokinetically decontaminated radioactive wastes is appropriate.

Characterization of Concrete Composites with Mixed Plastic Waste Aggregates (복합 폐플라스틱 골재 치환 콘크리트의 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.317-324
    • /
    • 2020
  • Plastic wastes generated from domestic waste are separated by mixed discharge with foreign substances, and the cost of the separation and screening process increases, so recycling is relatively low. In this study, as a fundamental study for recycling mixed plastic wastes generated from domestic waste into concrete aggregates, changes in concrete properties according to the plastic waste types and the substitution rate were evaluated experimentally. The mixed plastic waste aggregate(MPWA) was found to have a lower density and a higher absorption rate compared to the coarse aggregate with good particle size distribution. On the other hand, the single plastic waste aggregate(SPWA) was composed of particles of uniform size, and both the density and the absorption rate were lower than that of the fin e aggregate. It was found that the MPWA substitution concrete did not cause a material separation phenomenon due to a relatively good particle size distribution even with the largest amount of plastic waste substitution, and the amount of air flow increased little. The compressive strength and flexural strength of the PWA substitution concrete decreased as the amount of substitution of the PWA increased due to the low strength of the PWA, the suppression of the cement hydration reaction due to hydrophobicity, and the low adhesion between the PWA and the cement paste. It was found that the degree of deterioration in compressive strength and flexural strength of concrete substituted with MPWA having good particle size distribution was relatively small.

Study on Phase Separation of Carbon Dioxide-reducible Polymer Blends (이산화탄소 저감형 고분자 블렌드의 상 분리 특성연구)

  • Cho, Yong-Kwang;Kim, Yeong-Woo;Lee, Hak Yong;Park, Sang-Bo;Park, Chan-Young;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • Sustainable and eco-friendly polymers, natural polymers, bio-based polymers, and degradable polyesters, are of growing interest because of environmental concerns associated with waste plastics and emissions of carbon dioxide from preparation of petroleum-based polymers. Degradable polymers, poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC), and poly(L-lactic acid) (PLLA), are related to reduction of carbon dioxide in processing. To improve a weak mechanical property of a degradable polymer, a blending method is widely used. This study was forced on the component separation of degradable polymer blends for effective recycling. The melt-mixed blend films in a specific solvent were separated by two layers. Each layer was analysed by FT-IR, DSC, and contact angle measurements. The results showed that each component in the PPC/PLLA and PPC/PBAT blends was successfully separated by a solvent.

Study on liquid carbonation using the recycling water of ready-mixed concrete (레미콘회수수를 이용한 액상탄산화에 관한 연구)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Choi, Chang-Sik;Hong, Bum-Ui;Park, Jin-Won;Lee, Dae-Young;Park, Byung-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.770-778
    • /
    • 2013
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. We recycled the recycling water of ready-mixed concrete, one of construction waste for use source of carbonate ion. A supernatant separated from the recycling water of ready-mixed concrete, as a result of ICP analysis of a cation, $Ca^{2+}$ was contained up to 1100 ppm. We used MEA as a $CO_2$ absorbent for the liquid carbonation. A precipitate $CaCO_3$ was produced at more than MEA 20 wt%. The precipitate $CaCO_3$ as a final product was separated and dried. The result of XRD was confirmed the generation of $CaCO_3$ to calcite structure.

A Study on the Removal of Phenol by Hybrid Process coupling adsorption with microfiltration (흡착과 정밀여과의 혼성공정에 의한 페놀 제거에 관한 연구)

  • ;;Fane, A. G.
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 1996
  • This work is a fundamental study for applying hybrid process coupling adsorption with microfiltration to waste-water treatment. Phenol was separated by adsorption on powdered activated carbon, adsorbed phenol with activated carbon was separated by microfiltration. As the particle size in suspension increased, filtration resistance decreased, and effect of particle concentration on resistance was less pronounced. The rate of uptake was greatly dependent on the degree of phenol loading. For a smaller amounts of activated carbon, the change of permeate concentration before break point and phenol loading with time were steeper than in the case of large amounts. Permeate concentration before break point decreased with decreasing particle size, this could be due to the increase of outer surface of particle and film mass transfer coefficient.

  • PDF

A study on the application of mill scale-derived magnetite particles for adsorptive removal of phosphate from wastewater (인제거용 흡착제로서 밀스케일로부터 선별된 마그네타이트 적용 연구)

  • Kim, Yunjung;Doliente, Jonica Ella;Choi, Younggyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.281-287
    • /
    • 2017
  • Mill scale, an iron waste, was used to separate magnetite particles for the adsorption of phosphate from aqueous solution. Mill scale has a layered structure composed of wustite (FeO), magnetite ($Fe_3O_4$), and hematite ($Fe_2O_3$). Because magnetite shows the highest magnetic property among these iron oxides, it can be easily separated from the crushed mill scale particles. Several techniques were employed to characterize the separated particles. Mill scale-derived magnetite particles exhibited a strong uptake affinity to phosphate in a wide pH range of 3-7, with the maximum adsorptive removal of 100%, at the dosage of 1 g/L, pH 3-5. Langmuir isotherm model well described the equilibrium data, exhibiting maximum adsorption capacities for phosphate up to 4.95 and 8.79 mg/g at 298 and 308 K, respectively. From continuous operation of the packed-bed column reactor operated with different EBCT (empty bed contact time) and adsorbent particle size, the breakthrough of phosphate started after 8-22 days of operation. After regeneration of the column reactor with 0.1N NaOH solution, 95-98% of adsorbed phosphate could be detached from the column reactor.

Treatment of Spent ion-Exchange Resins from NPP by Supercritical Water Oxidation(SCWO) Process (초임계수 산화공정에 의한 원전 폐수지 처리기술)

  • Kim, Kyeong-Sook;Son, Soon-Hwan;Song, Kyu-Min;Han, Joo-Hee;Han, Kee-Do;Do, Seung-Hoe
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.175-182
    • /
    • 2009
  • The spent cationic exchange resins and anionic exchange resins were separated from mixed spent exchange resins by a fluidized bed gravimetric separator. The separated resins were identified by an elemental analysis and thermogravimetric analysis. The each test sample was prepared by diluting the slurry made by wet ball milling the cationic exchange resins and the anionic exchange resins separated as a spherical granular form for 24 hours. The resulting test samples showed a slurry form of less than $75{\mu}m$ of particle size and 25,000ppm of $COD_{cr}$. The decomposition conditions of each test samples from a thermal power plant were obtained with a lab-scale(reactor volume : 220mL) supercritical water oxidation(SCWO) facility. Then pilot plant(reactor volume : 24 L) tests were performed with the test samples from a thermal power plant and a nuclear power plant successively. Based on the optimal decomposition conditions and the operation experiences by lab-scale facility and the pilot plant, a commercial plant(capacity : 150kg/h) can be installed in a nuclear power plant was designed.

  • PDF