• 제목/요약/키워드: Separated soil

검색결과 254건 처리시간 0.02초

Plant co-occurrence patterns and soil environments associated with three dominant plants in the Arctic

  • Deokjoo Son
    • Journal of Ecology and Environment
    • /
    • 제47권1호
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The positive effects of Arctic plants on the soil environment and plant-species co-occurrence patterns are known to be particularly important in physically harsh environments. Although three dominant plants (Cassiope tetragona, Dryas octopetala, and Silene acaulis) are abundant in the Arctic ecosystem at Ny-Ålesund, Svalbard, few studies have examined their occurrence patterns with other species and their buffering effect on soil-temperature and soil-moisture fluctuation. To quantify the plant-species co-occurrence patterns and their positive effects on soil environments, I surveyed the vegetation cover, analyzed the soil-chemical properties (total carbon, total nitrogen, pH, and soil organic matter) from 101 open plots, and measured the daily soil-temperature and soil-moisture content under three dominant plant patches and bare soil. Results: The Cassiope tetragona and Dryas octopetala communities increased the soil-temperature stability; however, the three dominant plant communities did not significantly affect the soil-moisture stability. Non-metric multidimensional scaling separated the sampling sites into three groups based on the different vegetation compositions. The three dominant plants occurred randomly with other species; however, the vegetation composition of two positive co-occurring species pairs (Oxyria digyna-Cerastium acrticum and Luzula confusa-Salix polaris) was examined. The plant species richness did not significantly differ in the three plant communities. Conclusions: The three plant communities showed distinctive vegetation compositions; however, the three dominant plants were randomly and widely distributed throughout the study sites. Although the facilitative effects of the three Arctic plants on increases in the soil-moisture fluctuation and richness were not quantified, this research enables a deeper understanding of plant co-occurrence patterns in Arctic ecosystems and thereby contributes to predicting the shift in vegetation composition and coexistence in response to climate warming. This research highlights the need to better understand plant-plant interactions within tundra communities.

Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads

  • Cui, Chunyi;Zhang, Shiping;Chapman, David;Meng, Kun
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.793-803
    • /
    • 2018
  • Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient of solid and liquid on the pile-soil system is limited.

Tree Ring Ca/Al as an Indicator of Historical Soil Acidification of Pinus Densiflora Forest in Southern Korea

  • Lee, Kwang-Seung;Hung, Dinh Viet;Kwak, Jin-Hyeob;Lim, Sang-Sun;Lee, Kye-Han;Choi, Woo-Jung
    • 한국환경농학회지
    • /
    • 제30권3호
    • /
    • pp.229-233
    • /
    • 2011
  • BACKGROUND: Soil acidification, which is known to be one of the reasons of forest decline, is associated with decreases in exchangeable Ca and increases in Al concentration, leading to low Ca/Al ratio in soil solution. As tree rings are datable archives of environmental changes, Ca/Al ratios of annual growth ring may show decreasing pattern in accordance with the progress of soil acidification. This study was conducted to investigate Ca/Al pattern of Pinus densiflora tree ring in an attempt to test its usefulness as an indicator of historical soil acidification. METHODS AND RESULTS: Three P. densiflora tree disks were collected from P. densiflora forests in Jeonnam province, and soil samples (0-10, 10-20, and 20-30 cm in depth) were also collected from the tree locations. Soils were analyzed for pH and exchangeable Ca and Al concentrations, and Ca/Al was calculated. Annual growth rings formed between 1969 and 2007 were separated and analyzed for Ca/Al. Soil Ca/Al was positively (P<0.01) correlated with soil pH, suggesting that soil acidification decreased Ca while increasing Al availability, lowering Ca/Al in soil solution. The Ca/Al of tree rings also showed a decreasing pattern from 18.2 to 5.5 during the period, and this seemed to reflect historical acidification of the soils. CONCLUSION(s): The relationship between soil pH and Ca/Al and the decreasing pattern of Ca/Al of tree ring suggest that Ca/Al of tree ring needs to be considered as a proxy of the progress of soil acidification in P. densiflora forest in southern Korea.

Water and soil properties in organic and conventional paddies throughout the rice cultivation cycle in South Korea

  • Lee, Tae-Gu;Lee, Chang-Gu;Hong, Seung-Gil;Kim, Jin-Ho;Park, Seong-Jik
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.45-53
    • /
    • 2019
  • Water and soil properties in paddy fields subjected to organic and conventional farming were characterized over the rice cycle in South Korea. To achieve the goals of this study, we sampled and analyzed soil and water from 24 organic paddy plots and 11 conventional paddy plots in March, May, August, and October 2016. The results were analyzed using statistical analyses, including analysis of variance (ANOVA), cluster analysis, and principal component analysis. The ANOVA results showed that water content (WC), electrical conductivity (EC), organic matter (OM), and available phosphorus ($P_2O_5$) in soil varied significantly (p < 0.01) depending on the farming method. Higher OM, EC, and $P_2O_5$ of soil were observed in the conventional paddies than in the organic paddies. All soil properties, except pH and ammonium, depended on seasonal variation. Cluster analysis revealed that soil properties in May were distinctly separated from those in other seasons mainly due to basal fertilization. The principal component analysis distinguished the soil properties in different seasons, but such a distinction was not observed between the soil properties in organic and conventional paddies. Low contents of WC, OM, and total N were observed in March. High concentrations of nitrate and total P were observed in May, but these were low in August and October. The soils from October were also characterized by high concentrations of EC and $P_2O_5$. These results indicate that the sampling time for soil and water can significantly influence the evaluation of soil properties with different farming methods.

環境傾度에 의한 母岳山 植物個體群의 分布類型 (Distribution patterns of specice populations along the environmental gradients in mt. moak provincial park, korea)

  • Kim, Jeong-Un;Yim, Yang-Jai
    • The Korean Journal of Ecology
    • /
    • 제15권4호
    • /
    • pp.365-375
    • /
    • 1992
  • The environmental gradient analyses were applied for the distribution patterns of species populations in mt. moak provincial park in korea. The species populations were sequentially ordered along the environmental gradients such as soil moisture, soil ph, soil organic matter content and elevation and were grouped into seven ecological groups by the two-dimensional analyses of temperature-moisture gradient : zelkova serrata group on mesic-lower parts near the streames and well drained stony slopes, carpinus tschonoskii group on mesic-middle parts, quercus acutissima group on lower parts destroyed by human activities, quercus variabilis group on xeric-middle parts, quercus serrata group on xeric-upper middle parts, quercus mongolica group on xeric-upper parts and pinus densiflora group on xeric-rock ridge lines, hillocks and lower parts interfered by human. Four forest vegetation types, zelkova forest dominated by the c. tschonoskii group on mesic-middle parts, oak forest dominated by the groups of q. acutissima, q. variabilis, q. serrata and q. mongolica on xeric sites and pine forest dominated by the p. densiflora group on dry and poor sites, were separated in mosaic chart by the two-dimensional analysis.

  • PDF

염화에텐의 환원성 탈염소화 모텔을 이용한 수소 경쟁에 대한 평가

  • 이일수;배재호
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.117-121
    • /
    • 2002
  • A numerical model that describes the reductive dechlorination of tetrachloroethene(PCE) to ethene via cis-dichloroethene(CDCE) was developed. The model included two separated dehalogenator groups : one for PCE transformation to cDCE via TCE and the other for cDCE dehalogenation to ethene via VC, competitive inhibition between different chloroethene electron accepters, and competition for H$_2$ between dechlorination and methanogens. Model simulations suggest first, that PCE dechlorinators are better competitive with methanogens than cDCE dechlorinators. Second, not only the initial relative population size of dehalogenators and H$_2$-utilizing methanogens but also electron donor delivery strategies used greatly affects the degree of dehalogenation. As a result, all of factors in the above must be considered in order to achieve economical and successful bioremediation of contaminated soil and groundwater with chlorinated solvents.

  • PDF

황사의 오염원분류포 개발을 위한 개별입자분석 (Individual Particle Analysis for Developing a Source Profile of Yellow Sands)

  • 강승우;김동술
    • 한국대기환경학회지
    • /
    • 제16권6호
    • /
    • pp.565-572
    • /
    • 2000
  • To quantitatively estimate mass contribution of long-range transported yellow sand, their sources should be separated independently from various local soil sources having similar elemental compositions. While it is difficult to estimate total mass loadings of pure yellow sand by traditional bulk analysis, it can be clearly solved by an particle-by-particle analysis. To perform this study, two yellow sand samples and three local soil samples were collected by a mini-volume sampler. These samples were three analyzed using a scanning electron microscope(SEM) equipped with an energy dispersive x-ray analyser (EDX) was used to obtain basic chemical information of individual yellow san particles. A total of 19 elements in a single particle were measured to develop a source profile with newly created homogeneous particle classes (HPCs) as chemical variables. The present study showed that the yellow sand samples as well as three local soil samples were characterized with reasonably well created HPCs. Finally the mass fraction of each HPC in each sample was calculated and then compared each other.

  • PDF

黃砂의 量的推定을 위한 基礎硏究 (Basic Research on the Quantitative Estimation of Yellow Sand)

  • 김동술
    • 한국대기환경학회지
    • /
    • 제6권1호
    • /
    • pp.11-21
    • /
    • 1990
  • To quantitatively estimate the effect of yellow sand(loess) fromt he Northern China, various soil sources having similar chemical compositions to yellow sands should be separated and identified. After that, mass contribution for yellow sand can be calculated. The study showed that it was impossible to solve this problem by the traditional bulk analyses. However, particle-by-particle analysis by a CCSEM (computer controlled scanning electron microscope) gave enormous potentials to solve it. To perform this study, seven soil source data analyzed by CCSEM were obtained from Texas, U.S.A. Initially, each soil date was classified into two groups, coarse and fine particle groups since the particle number distribution showed a minimum occurring at 5.2$\mu$m of aerodynamic diameter. Particles in each group were then classified into one of the 283 homogeneous particle classes by the universal classification rule which had been built by an expert system in the early study. Further, mass fractions and their uncertainties for each class in each source were calculated by the Jackknife method, and then source profile matrix for the 7 soil sources was created. To use the profile matrix in the study of source contribution, it is necessary to test the degree of collinearity among sources. The profiles were tested by the singular value decomposition method. As a result, each soil source characterized by artificially created variables was totally independent each other and is ready to use in source contribution studies as a receptor model.

  • PDF

Separation of soil Organic Debris using Sucrose-ZnCl2 Density Gradient Centrifugation

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.30-36
    • /
    • 2012
  • The active fraction of soil organic matter, which includes organic debris and light organic fraction, plays a major role in nutrient cycling. In addition, particulate organic matter is a valuable index of labile soil organic matter and can reflect differences in various soil behaviors. Since soil organic matter bound to soil mineral particles has its density lower than soil minerals, we partitioned soil organic matter into debris ($<1.5g\;cm^{-3}$), light fraction ($1.5-2.0g\;cm^{-3}$), and heavy fraction ($>2.0g\;cm^{-3}$), based on high density $ZnCl_{2-}$ sucrose solutions. Generally, partitioned organic bands were clearly separated, demonstrating that the $ZnCl_{2-}$ sucrose solutions are useful for such a density gradient centrifugation. The available gradient ranges from 1.2 to $2.0g\;cm^{-3}$. Although there was not a statistically meaningful difference in organic debris and organomineral fractions among the examined soils, there was a general trend that a higher content of organic debris resulted in a higher proportion of light organomineral fraction. In addition, high clay content was associated with increased fraction of light organomineals. Partitioning of soil organic carbon revealed that carbon content is reduced in the heavy fraction than in the light fraction, reflecting that the light fraction contains more fresh and abundant carbon than the passive resistant fraction. It was also found that carbon contents in the overall organic matter, debris, light fraction, and heavy fractions may differ considerably in response to different farming practices.

Polychlorobiphenyl (PCB) 토양오염복원: PCB 제거 토양미생물들의 군집과 기능을 효과적으로 분석하는 신 genomics 방법개발에 관한 연구

  • 박준홍
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.28-30
    • /
    • 2005
  • Because of high population diversity in soil microbial communities, it is difficult to accurately assess the capability of biodegradation of toxicant by microbes in soil and sediment. Identifying biodegradative microorganisms is an important step in designing and analyzing soil bioremediation. To remove non-important noise information, it is necessary to selectively enrich genomes of biodegradative microorganisms fromnon-biodegradative populations. For this purpose, a stable isotope probing (SIP) technique was applied in selectively harvesting the genomes of biphenyl-utilizing bacteria from soil microbial communities. Since many biphenyl-using microorganisms are responsible for aerobic PCB degradation In soil and sediments, biphenyl-utilizing bacteria were chosen as the target organisms. In soil microcosms, 13C-biphenyl was added as a selective carbon source for biphenyl users, According to $13C-CO_2$ analysis by GC-MS, 13C-biphenyl mineralization was detected after a 7-day of incubation. The heavy portion of DNA(13C-DNA) was separated from the light portion of DNA (12C-DNA) using equilibrium density gradient ultracentrifuge. Bacterial community structure in the 13C-DNAsample was analyzed by t-RFLP (terminal restriction fragment length polymorphism) method. The t-RFLP result demonstates that the use of SIP efficiently and selectively enriched the genomes of biphenyl degrading bacteria from non-degradative microbes. Furthermore, the bacterial diversity of biphenyl degrading populations was small enough for environmental genomes tools (metagenomics and DNA microarrays) to be used to detect functional (biphenyl degradation) genes from soil microbial communities, which may provide a significant progress in assessing microbial capability of PCB bioremediation in soil and groundwater.

  • PDF