• Title/Summary/Keyword: Seoul rainfall data set

Search Result 20, Processing Time 0.021 seconds

Analysis of the Rainfall Anomalies in Leap Monthly Years as Shown in the "Seoul Rainfall Table" (1770~2019) (측우기와 근대관측의 <서울우량표(1770~2019)>에 나타난 윤월년 강우 특이성 분석)

  • Il-Gwon Kim
    • Atmosphere
    • /
    • v.34 no.4
    • /
    • pp.337-347
    • /
    • 2024
  • This study reevaluated the Chukwookee precipitation records of the Diary of the Royal Secretariat and The Record of Daily Reflections, which are highly regarded as unprecedentedly long continuous meteorological records in world history. I have reconstructed them called "Hanyang Rainfall Data Set" (1770~1907). This dataset focuses on increased rainfall during 'leap monthly years' compared to regular years. Based on the analysis of First Hanyang Rainfall Data Set, leap monthly years (1,273.4 mm) were +6.0% higher than the overall annual average (1,201.6 mm), and +9.8% higher than 'non-leap monthly years' (1,159.6 mm). Upon further review using Second Modern Rainfall Data Set (1908~2019, 112 years), leap monthly years (1,369.1 mm) showed a +3.2% increase compared to the overall annual average (1,326.9 mm), and a +5.1% increase compared to non-leap monthly years (1,302.6 mm), demonstrating a consistent trend. When consolidated over the longest span of 250 years in Third Seoul Rainfall Data Set (1770~2019), leap monthly years (1,316.1 mm) were found to be +4.6% higher than the overall annual average (1,257.8 mm), and +7.5% higher than non-leap monthly years (1,223.8 mm). Furthermore, examining annual rainy days, leap monthly years in "Hanyang Rainfall Table" (56.3 days) showed a +3.9% increase compared to non-leap monthly years (54.2 days), indicating an overall increase in rainy days during leap monthly years. The occurrence of such peculiar increases in rainfall during leap monthly years could be attributed to meteorological changes throughout the year, caused by the additional intercalary month. However, specific academic discussions require consultation and evaluation from the meteorological community.

The Quantative Homogeneity Analysis of Seoul Rainfall (서울지점 강우자료의 정량적 동질성 분석)

  • Hwang, Seok-Hwan;Kim, Joong-Hoon;Yoo, Chul-Sang;Yoo, Do-Guen
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.29-35
    • /
    • 2009
  • In this study, quantitative homogeneity analysis was performed between rainfall observation data set of Chukwooki(CWK) and rainfall observation data set of modern rain gage(MRG) using statistical methods such as basic statistics, K-S test and Boxplots. To analyze the homogeneities of CWK and MRG four rainfall characteristic series such as monthly rainfall, the ratio of maximum daily rainfall to monthly rainfall, number of rainy days for each month, and the ratio of monthly rainfall to numbers of rainy days are made, and the homogeneity tests using two sample K-S test and quantitative comparisons were performed. The test results showed that observation precisions between CWK and MRG of original data set(M00) were differed because M00 clearly showed the statistical significances on differences of numbers of monthly rainy days of CWK and MRG. But, rainfall showed a little differences which were not significant between CWK and MRG.

A Study on the Change of Occurrence Characteristics of Daily Seoul Rainfall using Markov Chain (마코프 연쇄를 이용한 서울지점 일강우의 발생특성 변화 연구)

  • Hwang, Seok-Hwan;Kim, Joong-Hoon;Yoo, Chul-Sang;Jung, Sung-Won;Joo, Jin-Gul
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.747-758
    • /
    • 2009
  • In this study, long-term variabilities of rainfall-occurrence characteristics are analyzed using rainfall data at Seoul, which is the longest data record existing in world. first, the accuracy of Chukwooki data set (CWK) are evaluated in view of rainfall-occurrence probability by analyzing the transition probabilities and occurrence characteristics based on Markov chain. And long-term inter-monthly variabilities of transition probabilities are analyzed using two dimensional LOWESS regression. From the results of analyzed transition probabilities and occurrence characteristics, it is different that rainfall-occurrence characteristics between CWK and modern rain gage data set (MRG) for original rainfall data sets (M00). For characteristics of rainfall series, occurrences probabilities of rainfall are increased and durations of each rainfall are shorter than past. And from the results of analyzing the long-term inter-monthly variabilities of transition probabilities, in case of M20, lengths of dry spells between CWK and MRG are not different significantly and lengths of wet spells are decreased persistently after A.D. 1830. Especially, decreasing trend for lengths of wet spells at recent september are appeared significantly. These results are considered with increasing trend of recent rainfall, it is concluded that recent frequencies and intensities of rainfall are increasing.

Proposal for an Inundation Hazard Index of Road Links for Safer Routing Services in Car Navigation Systems

  • Kim, Ji-Young;Lee, Jae-Bin;Lee, Won-Hee;Yu, Ki-Yun
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.430-439
    • /
    • 2010
  • Inundation of roads by heavy rainfall has attracted more attention than traffic accidents, traffic congestion, and construction because it simultaneously causes travel delays and threatens driver safety. For these reasons, in this paper, we propose an inundation hazard index (IHI) of road links, which shows the possibility of inundation of road links caused by rainfall. To generate the index, we have used two key data sources, namely the digital elevation model (DEM) and past rainfall records of when inundation has occurred. IHI is derived by statistically analyzing the relationships between the normalized relative height of the road links calculated from DEM within the watershed and past rainfall records. After analyzing the practical applicability of the proposed index with a commercial car navigation system through a set of tests, we confirmed that the proposed IHI could be implemented to choose safer routes, with reduced chances of encountering roads having inundation risks.

Characteristics of Inter-monthly Climatic Change Appeared in Long-term Seoul Rainfall (장기간의 서울지점 강우자료에 나타난 월간 기후변화 특성)

  • Hwang, Seok Hwan;Kim, Joong Hoon;Yoo, Chul Sang;Lee, Jung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, To analyzed the monthly long-term change characteristics of Chukwooki rainfall data set (CWK) and modern rain gage rainfall data set (MRG), tests of trend or variation were performed of each data sets using five statistical trend or variation test method. furthermore, changing characteristics of rainfall was analyzed through the accomplishment of the 2-dimensional LOWESS regression (or smoothing) which can consider both annual time-variation and inter-monthly time-variation. From the trend test, it is difficult to confirm that given data sets have significant trends. From the 2-dimensional LOWESS analysis for four rainfall characteristics, after near A.D. 1980, inter-monthly variation width in addition to quantative increment of rainfall are increased rapidly and persistently.

A Statistical Homogeneity Analysis of Seoul Rainfall using Bootstrap (Bootstrap 기법을 이용한 서울지점 강우자료의 통계적 동질성 분석)

  • Hwang, Seok-Hwan;Kim, Joong-Hoon;Yoo, Chul-Sang;Jung, Sung-Won;Yoo, Do-Guen
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.795-807
    • /
    • 2009
  • In this study, homogeneity analysis was performed between rainfall observation data set of Chukwooki (CWK) and rainfall observation data set of modern rain gage (MRG) using Bootstrap method. Since traditional statistical homogeneity test method are validated only when distribution of their population is known, meteorological data which their statistical distributions of population are complicated were difficult to verify the homogeneity and there were plenty of room for doubt for their statistical significance using historical method. In this reason, in this study homogeneity test was evaluated between two data sets using bootstrap method which is not necessary to infer distribution of population. The test results show that there was an statistical homogeneity between CWK and MRG except for slight impact of climatical trend.

Development of an Integrated Forecasting and Warning System for Abrupt Natural Disaster using rainfall prediction data and Ubiquitous Sensor Network(USN) (농촌지역 돌발재해 피해 경감을 위한 USN기반 통합예경보시스템 (ANSIM)의 개발)

  • Bae, Seung-Jong;Bae, Won-Gil;Bae, Yeon-Joung;Kim, Seong-Pil;Kim, Soo-Jin;Seo, Il-Hwan;Seo, Seung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS, UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.

Finite Difference Model of Unsaturated Soil Water Flow Using Chebyshev Polynomials of Soil Hydraulic Functions and Chromatographic Displacement of Rainfall (Chebyshev 다항식에 의한 토양수분특성 및 불포화 수리전도도 추정과 부분 치환 원리에 의한 강우 분포를 이용한 토양수분 불포화 이동 유한차분 수리모형)

  • Ro, Hee-Myong;Yoo, Sun-Ho;Han, Kyung-Hwa;Lee, Seung-Heon;Lee, Goon-Taek;Yun, Seok-In;Noh, Young-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.181-192
    • /
    • 2003
  • We developed a mathematical simulation model to portray the vertical distribution of soil water from the measured weather data and the known soil hydraulic properties, and then compared simulation results with the periodically measured soil water profiles obtained on Jungdong sandy loam to verify the model, In this model, we solved potential-based Richards' equation by the implicit finite difference method superimposed on the predictor-corrector scheme. We presumed that: soil hydraulic properties are homogeneous; soil water flows isothermally; hysteresis is not considered; no vapor flows; no heat transfers into the soil profiles; and water added to soil surface is distributed along the soil profile following partial displacement principle. The input data were broadly classified into two groups: (1) daily weather data such as rainfall, maximum and minimum air temperatures, relative humidity and solar radiation and (2) soil hydraulic data to approximate unsaturated hydraulic conductivity and water retention. Each hydraulic polynomial function approximated using the Chebyshev polynomial and least square difference technique in tandem showed a fairly good fit of the given set of data. Vertical distribution of soil water as approximations to the Richards' equation subject to changing surface and phreatic boundaries was solved numerically during 53 days with a comparatively large time increment, and this pattern agreed well with field neutron scattering data, except for the surface 0.1 m slab.

Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City's hydraulic facility design standards (서울시 수리시설 설계기준의 기후변화 영향 고려를 위한 미래강우시나리오 산정)

  • Yoon, Sun-Kwon;Lee, Taesam;Seong, Kiyoung;Ahn, Yujin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.419-431
    • /
    • 2021
  • In Seoul, it has been confirmed that the duration of rainfall is shortened and the frequency and intensity of heavy rains are increasing with a changing climate. In addition, due to high population density and urbanization in most areas, floods frequently occur in flood-prone areas for the increase in impermeable areas. Furthermore, the Seoul City is pursuing various projects such as structural and non-structural measures to resolve flood-prone areas. A disaster prevention performance target was set in consideration of the climate change impact of future precipitation, and this study conducted to reduce the overall flood damage in Seoul for the long-term. In this study, 29 GCMs with RCP4.5 and RCP8.5 scenarios were used for spatial and temporal disaggregation, and we also considered for 3 research periods, which is short-term (2006-2040, P1), mid-term (2041-2070, P2), and long-term (2071-2100, P3), respectively. For spatial downscaling, daily data of GCM was processed through Quantile Mapping based on the rainfall of the Seoul station managed by the Korea Meteorological Administration and for temporal downscaling, daily data were downscaled to hourly data through k-nearest neighbor resampling and nonparametric temporal detailing techniques using genetic algorithms. Through temporal downscaling, 100 detailed scenarios were calculated for each GCM scenario, and the IDF curve was calculated based on a total of 2,900 detailed scenarios, and by averaging this, the change in the future extreme rainfall was calculated. As a result, it was confirmed that the probability of rainfall for a duration of 100 years and a duration of 1 hour increased by 8 to 16% in the RCP4.5 scenario, and increased by 7 to 26% in the RCP8.5 scenario. Based on the results of this study, the amount of rainfall designed to prepare for future climate change in Seoul was estimated and if can be used to establish purpose-wise water related disaster prevention policies.

지점우량 자료의 분포형 설정과 내용안전년수에 따르는 확률강우량에 관한 고찰 - 국내 3개지점 서울, 부산 및 대구를 중심으로 -

  • Lee, Won-Hwan;Lee, Gil-Chun;Jeong, Yeon-Gyu
    • Water for future
    • /
    • v.5 no.1
    • /
    • pp.27-36
    • /
    • 1972
  • This thesis is the study of the rainfall probability depth in the major areas of Korea, such as Seoul, Pusan and Taegu. The purpose of the paper is to analyze the rainfall in connection with the safe planning of the hydraulic structures and with the project life. The methodology used in this paper is the statistical treatment of the rainfall data in the above three areas. The scheme of the paper is the following. 1. The complementation of the rainfall data We tried to select the maximm values among the values gained by the three methods: Fourier Series Method, Trend Diagram Method and Mean Value Method. By the selection of the maximum values we tried to complement the rainfall data lacking in order to prevent calamities. 2. The statistical treatment of the data The data are ordered by the small numbers, transformed into log, $\sqrt{}, \sqrt[3]{}, \sqrt[4], and$\sqrt[5], and calculated their statistical values through the electronic computer. 3. The examination of the distribution types and the determination of the optimum distibution types By the $x^2-Test$ the distribution types of rainfall data are examined, and rejected some part of the data in order to seek the normal rainfall distribution types. In this way, the optimum distribution types are determined. 4. The computation of rainfall probability depth in the safety project life We tried to study the interrelation between the return period and the safety project life, and to present the rainfall probability depth of the safety project life. In conclusion we set up the optimum distribution types of the rainfall depths, formulated the optimum distributions, and presented the chart of the rainfall probability depth about the factor of safety and the project life.ct life.

  • PDF