• 제목/요약/키워드: Sentinel-1 위성

검색결과 143건 처리시간 0.038초

Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구 (A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models)

  • 전현균;김준우;수레시 크리쉬난;김덕진
    • 대한원격탐사학회지
    • /
    • 제35권6_1호
    • /
    • pp.999-1009
    • /
    • 2019
  • 북극항로의 개척 가능성과 정확한 기후 예측 모델의 필요성에 의해 북극해 고해상도 해빙 지도의 중요성이 증가하고 있다. 그러나 기존의 북극 해빙 지도는 제작에 사용된 위성 영상 취득 센서의 특성에 따른 데이터의 취득과 공간해상도 등에서 그 활용도가 제한된다. 본 연구에서는 Sentinel-1 A/B SAR 위성자료로부터 고해상도 해빙 지도를 생성하기 위한 딥러닝 기반의 해빙 분류 알고리즘을 연구하였다. 북극해 Ice Chart를 기반으로 전문가 판독에 의해 Open Water, First Year Ice, Multi Year Ice의 세 클래스로 구성된 훈련자료를 구축하였으며, Convolutional Neural Network 기반의 두 가지 딥러닝 모델(Simple CNN, Resnet50)과 입사각 및 thermal noise가 보정된 HV 밴드를 포함하는 다섯 가지 입력 밴드 조합을 이용하여 총 10가지 케이스의 해빙 분류를 실시하였다. 이 케이스들에 대하여 Ground Truth Point를 사용하여 정확도를 비교하고, 가장 높은 정확도가 나온 케이스에 대해 confusion matrix 및 Cohen의 kappa 분석을 실시하였다. 또한 전통적으로 분류를 위해 많이 활용되어 온 Maximum Likelihood Classifier 기법을 이용한 분류결과에 대해서도 같은 비교를 하였다. 그 결과 Convolution 층 2개, Max Pooling 층 2개를 가진 구조의 Convolutional Neural Network에 [HV, 입사각] 밴드를 넣은 딥러닝 알고리즘의 분류 결과가 96.66%의 가장 높은 분류 정확도를 보였으며, Cohen의 kappa 계수는 0.9499로 나타나 딥러닝에 의한 해빙 분류는 비교적 높은 분류 결과를 보였다. 또한 모든 딥러닝 케이스는 Maximum Likelihood Classifier 기법에 비해 높은 분류 정확도를 보였다.

Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발 (Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images)

  • 김선화;은정
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.989-998
    • /
    • 2021
  • 구름의 영향을 크게 받는 광학위성영상의 활용에 있어 일정 주기 합성은 구름의 영향을 최소화할 수 있는 유용한 방법이다. 최근 주기 합성 시 구름과 구름 그림자 정보가 직접 입력되어 일정 주기 시 두 인자의 영향을 가장 덜 받는 최적의 화소를 선택하는 기법이 제시되었다. 최적의 합성 결과를 도출하기 위해서는 구름과 구름 그림자의 정확한 추출이 필수적이다. 또한 농작물과 같이 분광정보가 중요한 대상의 경우 주기 합성 시 분광정보의 손실이 최소화되어야 한다. 본 연구에서는 구름과 구름 그림자의 높은 탐지정확도를 유지하면서 분광정보의 손실이 적은 탐지 기법을 도출하기 위해, 강원도 고랭지 배추밭을 대상으로 두 분광척도(Haze Optimized Tranformation; HOT, MeanVis)를 이용한 방법과 Sentinel-2A/B에서 제공되는 구름 정보를 비교 분석하였다. 2019년~2021년까지 자료를 분석한 결과 Sentinel-2A/B위성의 구름 정보는 F1값이 0.91인 탐지 정확도를 보이나, 밝은 인공물이 구름으로 오탐지되었다. 이에 비해 HOT에 임계치(=0.05)를 적용해 획득한 구름 탐지 결과는 상대적으로 낮은 탐지 정확도(F1=0.72)를 보였으나, 오탐지가 적어 분광정보의 손실을 최소화하였다. 구름 그림자의 경우, Sentinel-2A/B 부가 레이어에서는 최소한의 그림자만이 탐지된 결과를 볼 수 있었으나, MeanVis에 임계치(= 0.015)를 적용했을 시 지형적으로 발생한 그림자와 구별 가능한 구름 그림자만을 탐지할 수 있었다. 분광척도 기반 구름 및 그림자 정보를 입력해 안정된 월별 합성된 식생지수결과를 획득하였으며, 향후 Sentinel-2A/B의 높은 정확도의 구름 정보를 주기 합성에 입력해 비교할 예정이다.

GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구 (A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II)

  • 이진교;김근용;유주형
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1329-1340
    • /
    • 2021
  • 해양과 육상사이의 전이지대인 조간대는 인위적 활동과 자연적 교란에 의해 다양한 변화가 빠르게 일어나 지속적인 모니터링이 필요하다. 원격탐사 방법을 활용한 연안지형변화 모니터링은 조간대 접근성에 대한 한계를 극복하고, 조간대의 장기적인 지형변화를 관측하는데 효과적인 것으로 평가된다. 원격탐사를 이용한 기존 연안지형 모니터링연구는 대부분 Landsat 위성시리즈와 Sentinel 위성 영상 분석을 통해 수행되었다. 본 연구는 GOCI-II(천리안 해양위성 2호)영상에서 NDWI 지수를 이용해 수륙경계선을 추출한 후 다양한 조위에 따른 경기만 일대 조간대 면적 변화를 파악하고 짧은 기간 동안 DEM제작과 지형고도변화 관측의 유용성에 대해 살펴보았다. 2020년 10월 8일부터 2021년 8월 16일까지 경기만 일대에서 획득된 영상은 GOCI-II 249장, Sentinel-2A/B 39장, Landsat 8 OLI는 7장이었다. 조간대 DEM을 제작할 경우, Sentinel과 Landsat 영상은 최소 3개월에서 1년 이상의 자료수집이 필요했지만, GOCI-II 위성은 단 하루의 자료를 이용해서 조위에 따른 경기만 일대 조간대 DEM생성이 가능하였고 조간대 노출빈도 계산을 통해 지형고도변화도 관측하였다. GOCI-II 위성을 활용해 연안지형변화를 관측시 짧은 주기의 높은 시간해상도로 지형 변화를 조기 감지하고 부족한 공간해상도는 고해상도의 다중복합자료를 이용해 정밀하게 보간하여 활용하는 방안이 좋을 것으로 생각된다. 향후, 위 결과들을 바탕으로 연구 영역을 확대하고, 자동 분석 및 탐지 가능한 기술 개발을 통해 한반도 연안의 최신 지형도와 연안관리에 필요한 정보를 빠르게 제공 가능할 것으로 기대된다.

Sentinel-1 C-band SAR 영상을 이용한 용담댐 유역의 시공간 토양수분 산정 (Estimation of spatiotemporal soil moisture distribution for Yongdam-dam watershed using Sentinel-1 C-band Synthetic Aperture Radar images)

  • 정지훈;이용관;장원진;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.162-162
    • /
    • 2020
  • 토양수분은 TDR(Time Domain Reflectometry)이나 Tensiometer 등의 장비를 이용하여 측정을 시행하고 있으나, 이를 위해서는 많은 인력과 경제적 자원이 소비될 뿐만 아니라 시공간적으로 측정할 수 있는 범위에 한계가 있다. 지상 관측의 대안으로 MIRAS(Microwave Imaging Radiometer with Aperture Synthesis)나 SMAP(Soil Moisture Active Passive), AMSR2(Advanced Microwave Scanning Radiometer 2) 등의 수동 마이크로파 위성 센서를 이용한 공간 토양수분 관측이 수행되었으나, 낮은 공간 해상도(9~36km)는 지역 규모의 토양수분 분포를 나타내기 충분하지 않고, 높은 불확실성을 내포하고 있다. 본 연구에서는 금강 상류의 용담댐 유역(930.0㎢)을 대상으로 Sentinel-1 C-band SAR(Synthetic Aperture Radar) 영상을 이용한 토지 피복 및 토양 속성을 고려한 10m 해상도의 토양수분 산출을 수행하였다. 용담댐 유역은 산림 79.7%, 논 9.0%, 밭 5.4%, 주거지 2.9%의 토지 피복 비율을 가지며 토양은 사양토(66.6%)와 양토(20.9%)가 우세하다. Sentinel-1 C-band SAR 영상은 SeNtinel Application Platform(SNAP)을 이용하여 전처리 후, 후방산란계수로 변환하였다. 토양수분 알고리즘은 TU-Wien change detection algorithm과 Regression model을 활용하였고, 검증을 위한 실측 토양수분 자료는 한국수자원공사(K-water)에서 제공하는 5년(2014~2018)간의 토양수분 관측자료를 이용하였다. 산출된 토양수분은 결정계수(Coefficient of determination, R2) 및 평균제곱근오차(Root Mean Square Error, RMSE)를 이용하여 실측 토양수분과 비교하였다. Sentinel-1 C-band SAR 영상을 이용한 고해상도의 토양수분 산출은 토지 피복 및 토양 속성을 고려한 지역 규모의 공간 토양수분 분포 및 시간적 변화를 표현 가능할 것으로 판단된다.

  • PDF

수자원위성 활용을 위한 AI기반 수변환경 및 부유물 탐지 알고리즘 개발 (Development of an AI-based Waterside Environment and Suspended Solids Detection Algorithm for the Use of Water Resource Satellite)

  • 임정호;조경화;박선영;이재세;배덕원;권도혁;홍석민;김병철
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.4-4
    • /
    • 2023
  • C-band SAR 센서를 탑재한 수자원위성은 한반도 수자원 모니터링을 위해 개발되어 2025년 발사가 계획되어 있으며, 수변환경 및 부유물 탐지 및 다양한 활용이 기대되고 있다. 그 중 수변환경은 수변 생태계 안정성을 유지하는 역할을 담당하여 이에 대한 모니터링은 중요하다. s현장 관측 기반 탐지 방법과 비교하여 위성 원격탐사는 광범위한 지역을 반복적으로 관측하여, 연속적인 수변환경 및 부유물 정보를 제공할 수 있다. 이러한 특성에 기반하여 다양한 다중분광 및 SAR (Synthetic Aperture Radar) 위성 원격탐사 자료를 바탕으로 수변환경 및 부유물의 탐지 연구가 이루어졌다. 특히 단일 영상만을 사용하는 기법에 비해 다중분광 및 SAR 영상을 융합하여 높은 정확도를 보인 바 있다. 초기 연구에서는 임계값 알고리즘 또는 현장관측 기반의 부유물 농도와 위성 자료간의 선형관계를 분석하는 단순한 알고리즘이 주를 이루었으나, 최근에는 RF, CNN 등 보다 복잡하고 다양한 인공지능 알고리즘이 적용되어 높은 정확도로 해당 문제들을 해결하고 있다. 본 연구에서는 수자원위성 활용을 위해 인공지능 기반 수변환경 및 부유물 탐지 알고리즘을 개발하고자 한다. 수자원위성의 대체 자료로 유럽우주국의 Sentinel-1 A/B 위성의 C-band SAR 영상을 이용하였으며, 보조자료로 Sentinel-2 다중분광 영상을 이용하였다. 개발된 알고리즘은 수자원 관리를 위한 환경변화 탐지에 유용한 정보로 활용될 수 있을 것으로 기대된다.

  • PDF

Sentinel-2 기반 NDWI를 이용한 수체 탐지 연구: 북한 황강댐을 사례로 (Waterbody Detection from Sentinel-2 Images Using NDWI: A Case of Hwanggang Dam in North Korea)

  • 계창우;신대규;이종혁;김진겸
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1207-1214
    • /
    • 2021
  • 본 논문에서는 미계측 저수지에 대한 저수지 면적 계산을 위하 Sentinel-2 광학 위성 영상을 기반으로 한 원격 수체 탐지를 수행하는 과정에서 구름의 영향을 배제할 수 있는 기술을 개발하고, 이에 대한 활용성 확인을 위해 대표적인 미계측 저수지인 북한 황강댐 저수지에 적용해보았다. 원격 수체 탐지 기술은 가장 먼저 탐지 대상 저수지가 포함된 Sentinel-2 위성 자료의 구름 경계 정보와 저수지 경계를 비교하여 구름 차폐 비율을 계산하고, 그 값이 일정 값을 넘지 않는 자료를 선정한다. 그 후, 선정한 영상을 이용해 NDWI (Normalized Difference Water Index)를 계산해 대상 저수지 경계 내에서 수체로 간주할 수 있는 NDWI 값을 지니는 격자 수를 구하고 구름 차폐 비율을 이용해 보정하는 것으로 저수지의 수체 면적을 계산한다. 이를 토대로 황강댐 저수지에 대한 자료를 선정하기 위한 구름 차폐 비율 기준을 결정하기 위해 2018년 7월부터 2021년 10월까지의 자료에 적용해본 결과, 구름 차폐 비율 기준을 10%로 설정했을 때 구름으로 인한 왜곡이 크게 발생한 탐지 결과가 충분히 걸러지는 것을 확인하고, 총 220개 영상 중 수체면적 변화를 확인할 수 있는 114개의 황강댐 저수지 면적 계산 결과를 얻을 수 있었다.

Sentinel-1 & -2 위성영상 기반 식생지수와 Water Cloud Model을 활용한 토양수분 산정 (Soil moisture estimation using the water cloud model and Sentinel-1 & -2 satellite image-based vegetation indices)

  • 정지훈;이용관;김진욱;장원진;김성준
    • 한국수자원학회논문집
    • /
    • 제56권3호
    • /
    • pp.211-224
    • /
    • 2023
  • 본 연구에서는 합성개구레이더(Synthetic Aperture Radar, SAR) 기반의 식생을 고려하는 후방산란모델 Water Cloud Model (WCM)을 활용한 토양수분 산정 연구를 수행하였다. 금강 상류의 용담댐유역을 포함한 40 × 50 km2 영역의 Sentinel-1 SAR 및 Sentinel-2 MSI (Multi-Spectral Instrument) 영상을 수집하여 연구에 활용하였다. WCM의 식생변수로는 Sentinel-1 기반의 식생지수 RVI (Radar Vegetation Index), 탈분극비(Depolarization Rario, DR)와 Sentinel-2 기반의 NDVI (Normalized Difference Vegetation Index)를 활용하였다. WCM의 정모델링(forward modeling)은 토양수분과 후방산란계수의 특성이 유사한 3개 Group으로 나누어 수행하였다. 토양수분과 후방산란계수의 선형적인 관계가 명확할수록 Group의 모의 성능이 더 높게 나타났으며, 식생지수 별로는 NDVI, RVI, DR 순으로 정확도가 높았다. 토양수분을 모의하기 위해 모의된 후방산란계수를 반전(inversion)하였으며, 모의 성능은 정모델링 결과와 비례하였다. WCM 모의의 오류는 실측 후방산란계수 기준 약 -12dB를 기점으로 증가하는 양상을 보였다.

BRDF 앙상블 모델을 이용한 고해상도 Sentinel-2 영상 보정 (High-Resolution Sentinel-2 Imagery Correction Using BRDF Ensemble Model)

  • 문현동;김보경;김경민;최수빈;조은이;안호용;류재현;최성원;조재일
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1427-1435
    • /
    • 2023
  • 농업의 새로운 패러다임인 디지털 농업에서는 원격탐사 기법을 활용하여 작물 생육을 지속적으로 감시하며 해당 정보를 신속하게 디지털화 하고 있다. 이를 위해 선택적 파장 반사도 변화를 기반으로 한 식생지수가 널리 활용되고 있다. 그러나 식생 표면의 분광 산란·반사는 이방성을 보이기 때문에 광원인 태양의 위치와 관측 방향에 따라 반사도가 달라진다. 이는 식생지수 값이 작물의 실제 상태를 정확하게 반영하지 못하고 왜곡될 수 있다. 본 연구에서는 이방성 반사 특성 보정을 위해 bidirectional reflectance distribution function (BRDF) 앙상블 모델을 고해상도 Sentinel-2 위성 영상에 적용하고, normalized difference vegetation index (NDVI)와 2-band enhanced vegetation index (EVI2)를 산출하였다. BRDF 보정에 따라 산림에서 Red와 near-infrared (NIR) 밴드의 반사도가 대체로 증가하고, 농촌마을 및 농경지에서는 감소했다. 식생지수는 BRDF 보정 후에 산림지역 내에서의 지형 구분이 뚜렷해지고 논은 수확 유무에 따른 공간적 차이가 상승했다. 이는 EVI2보다 NDVI에서 그 차이가 컸다. 이러한 결과는 앞으로의 고해상도 위성 영상에서의 BRDF 모델 개발과 개선에 기여할 것으로 기대된다.

산불피해대장 정보와 위성영상 기반 산불발생데이터의 연계 방안 (The Method of Linking Fire Survey Data with Satellite Image-based Fire Data)

  • 김태희;최진무
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1125-1137
    • /
    • 2020
  • 본 연구에서는 산불 발생 위치와 면적만 기록하는 산불피해대장 정보의 한계점을 보완하기 위해 위성 영상 기반의 산불발생데이터의 연계 방법을 제시하고자 하였다. 이를 위해 2012년 1월 ~ 2019년 12월 사이 산림청에서 제공하는 산불피해대장 자료와 MODIS 및 VIIRS 기반 산불발생데이터를 연계하는 방안을 도출하였다. 연구 결과 191건의 산불피해대장 산불 중 MODIS와 VIIRS 기반 산불발생데이터는 각각 약 11%와 44%의 산불에 대해 발생지역 확인이 가능하였다. VIIRS 기반 산불발생데이토로 추출한 피해지역에 대해 고해상도의 Sentinel-2A 위성으로 확인한 산불 영역과 비교한 결과 평균 56% 정도의 산림지역 피해가 추출되었다. 따라서 대규모 산불에 대해서는 VIIRS 산불발생데이터를 이용하면 면적과 발화점 위치만 기록하는 산불피해대장 정보의 한계점을 보완할 수 있을 것이다.

딥러닝 모형을 이용한 Sentinel SAR 기반 고해상도 토양수분 산정 (Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Deep Learning Regression Model)

  • 이태화;김상우;천범석;정영훈;신용철
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.114-114
    • /
    • 2021
  • 본 연구에서는 Sentinel-1 SAR 센서 기반 이미지자료와 딥러닝기법을 이용하여 고해상도 토양수분을 산정하였다. 입력자료는 지표특성(모래함량, 점토함량, 경사도), 인공위성 기반의 강우와 LANDSAT 기반의 이미지자료(NDVI, LST, 공간분포 토양수분)를 사용하였다. 강우자료의 경우 GPM(Global Precipitation Measurement) 일강우 자료를 사용하였으며, 관측일 기준으로 5일전까지의 강우자료와 5일평균강우를 구분하여 사용하였다. LANDSAT 기반의 토양수분 이미지자료와 지점관측 토양수분을 이용하여 검·보정 이후 딥러닝 모형의 입력자료로 사용하였다. 입력자료는 30m × 30m 해상도로 Resample 하여 딥러닝 모형의 학습을 진행하였으며, 학습에 사용된 모형을 이용하여 Sentinel-1 기반의 고해상도(10m × 10m) 토양수분이미지를 산정하였다. 검증지점은 거창군 거창읍, 계룡시 두마면, 장수군 장수읍 및 무주군 무주읍 토양수분 관측지점을 선정하였다. 거창군 거창읍의 산정결과, LANDSAT 기반의 토양수분 이미지와 DNN 기반의 토양수분 이미지가 매우 유사하게 나타났으며, 모의값(DNN 기반 토양수분)이 실측값(LANDSAT 기반의 토양수분)을 잘 반영한 것(R: 0.875 ; RMSE: 0.013)으로 나타났다. 또한 학습모형을 토지피복이 유사한 지역에 적용하여 토양수분을 산정한 결과 검증지점 계룡시(R: 0.897 ; RMSE: 0.014), 장수군(R: 0.770 ; RMSE: 0.024) 및 무주군(R: 0.909 ; RMSE: 0.012)의 모의값이 실측값과 매우 유사한 것으로 나타났다. 이를 바탕으로 Seninel-1 SAR센서 이미지자료와 딥러닝기법을 연계한 고해상도 토양수분자료가 농업, 수문, 환경 등 다양한 분야에서 활용될 수 있을 것으로 판단된다.

  • PDF