This study examined the effects of considered attributes when purchase on consumption attitudes and consumption happiness as well as compared the effects for sensible consumption and sentimental consumption. Data was collected from 373 consumers in 20s and 30s from November 15th to 20th in 2017. IBM SPSS 25.0 was used for basic statistical analyses and for paired t-tests, and lavaan 0.6-3 package and semTools package in R 3.3.3(2017-03-06) was used for structural equation modeling. The results of this study are summarized as follows. First, there were almost no differences in product types between sentimental consumption and sensible consumption. Second, consumption attitudes toward sensible consumption were more positive than sensible consumption; however consumption happiness from sentimental consumption was higher than from sensible consumption. Third, considered attributes when making purchases were divided into subjective, objective, and symbolic with the effects of these attributes on consumption attitudes and consumption happiness analyzed by structural equation modeling. Regardless of sentimental or sensible consumption, objective selection attributes have a positive effect on consumption attitude, but subjective selection attributes have a positive effect on consumption happiness. This study implies that sentimental consumption has a positive value for contemporary consumers and that it should be counted as a feasible consumption activity to enhance consumption happiness.
본 연구는 영화 리뷰 값이 1000개 이상인 673개의 영화를 대상으로 영화 장르별로 관객들이 느끼는 감정 어휘의 분포를 탐색하고 영화 흥행도와 감정 어휘의 관계를 파악하는데 목적이 있다. 분석을 위해 네이버 영화 리뷰를 크롤링하고 감정 어휘 사전을 활용하여 7개의 대표 감정 어휘, 영화 티켓 판매액, 영화 관람 관객 수, 상영 스크린 수, 한 스크린 당 영화 관람 관객 수, 영화의 장르, 영화의 영문 이름으로 구성된 데이터를 생성하였다. 연구 목적을 위한 분석은 상관관계 분석 방법과 Parallel coordinates 시각화 분석 방법을 사용하였다. 연구 결과로는 첫째, 장르에 따른 영화 흥행도를 분석하여 영화 흥행도가 가장 높은 장르는 코미디이고 가장 낮은 장르는 호러라는 결과를 확인하였다. 둘째, 모든 장르에서 'Happy'와 'Surprise'의 값이 높게 나오지만 다른 장르들에 비해 판타지 장르의 영화는 지루한 감정이 많이 느껴지고, SF장르의 영화는 화나는 감정이 많이 느껴진다는 결과를 확인 하였다. 셋째, 모든 장르의 감정 어휘 별 상관관계를 분석하여 Disgust'의 값이 높아질 때 'Anger'의 값도 높아지고, 'Happy'의 값이 높아질 때 'Surprise'의 값은 낮아진다라는 결과를 확인하였다. 넷째, 영화 흥행도에 따른 감정 어휘를 분석하여 영화 흥행도와 'Happy'는 선형 관계이지만 영화 흥행도와 'Fear'는 비선형 관계인 것을 확인 하였다.
본 논문에서는 사용자가 작성한 영화평으로부터 추출한 감정어휘에 기반한 영화검색시스템을 제안한다. 먼저, 사용자의 영화평을 형태소분석하고 수작업으로 감정어휘사전을 구축한다. 그 다음, 검색의 대상이 되는 영화별로 감정어휘사전에 포함되어 있는 감정어휘들의 가중치를 TF-IDF를 이용하여 계산한다. 이러한 결과를 이용하여 제안 시스템은 영화의 감정 분류를 결정하고, 랭킹하여 사용자에게 보여주게 된다. 사용자들은 영화평을 읽지 않고도, 감정 어휘로 구성된 질의어를 입력하여 원하는 영화를 찾을 수 있게 된다.
This article examines Laurence Sterne's Sentimental Journey in the context of eighteenth-century British travel literature. While literary critics generally read Sterne's work as a sentimental novel, contemporary readers initially interpreted the text as a travel narrative. It is my argument that travel writing, particularly the motion entailed in travelling, plays a significant role in Sterne's critical examination of sympathy and its cultural function during this period. By narrating in great detail his narrator Yorick's mobility and the effects it has on his sentimental encounters, Sterne illustrates how sympathy is not only difficult to activate and therefore requires added stimulation in the form of motion, but also does not necessarily result in charitable actions, a moral failure that is dramatized by the literal distance Yorick maintains from the objects of his sympathy. Calling to mind the figurative distance that constitutes an integral part of Adam Smith's formulation of sympathy in The Theory of Moral Sentiments, the distance Yorick establishes through his travels indicates sympathy's failure to bridge the emotional and socioeconomic distance between individuals, thereby highlighting sympathy's limitations as a moral instrument. I argue that by using Yorick's repeated acts of sympathy to explore the problems of sentimentalism, Sterne both draws from and innovates the tradition of employing imaginary voyages to engage in philosophical inquiries.
International Journal of Internet, Broadcasting and Communication
/
제13권1호
/
pp.100-106
/
2021
Over the past few decades, natural language processing research has not made much. However, the widespread use of deep learning and neural networks attracted attention for the application of neural networks in natural language processing. Sentiment analysis is one of the challenges of natural language processing. Emotions are things that a person thinks and feels. Therefore, sentiment analysis should be able to analyze the person's attitude, opinions, and inclinations in text or actual text. In the case of emotion analysis, it is a priority to simply classify two emotions: positive and negative. In this paper we propose the deep learning based sentimental analysis system according to various optimizer that is SGD, ADAM and RMSProp. Through experimental result RMSprop optimizer shows the best performance compared to others on IMDB data set. Future work is to find more best hyper parameter for sentimental analysis system.
본 연구는 자모 단위의 임베딩과 회선 신경망을 활용한 한국어 감성 분석 알고리즘을 제안한다. 감성 분석은 텍스트에서 나타난 사람의 태도, 의견, 성향과 같은 주관적인 데이터 분석을 위한 자연어 처리 기술이다. 최근 한국어 감성 분석을 위한 연구는 꾸준히 증가하고 있지만, 범용 감성 사전을 사용하지 못하고 각 분야에서 자체적인 감성 사전을 구축하여 사용하고 있다. 이와 같은 현상의 문제는 한국어 특성에 맞지 않게 형태소 분석을 수행한다는 것이다. 따라서 본 연구에서는 감성 분석 절차 중 형태소 분석을 배제하고 초성, 중성, 종성을 기반으로 음절 벡터를 생성하여 감성 분석을 하는 모델을 개발하였다. 그 결과 단어 학습 문제와 미등록 단어의 문제점을 최소화할 수 있었고 모델의 정확도는 88% 나타내었다. 해당 모델은 입력 데이터의 비 정형성에 대한 영향을 적게 받으며, 텍스트의 맥락에 따른 극성 분류가 가능하게 되었다. 한국어 특성을 고려하여 개발된 본 모델이 한국어 감성 분석을 수행하고자 하는 비전문가에게 보다 쉽게 이용될 수 있기를 기대한다.
The purpose of this study is to figure out the effects of advertisements (functional value, sentimental value, self-expressing value) depending on the gender in regard of the attitude towards the advertisement, brand attitude, purchase intention, and the characteristic and quality of the product. From the study on the university students, there was a meaningful interaction among the independent variables in regard of attitude towards advertisement, brand attitude, purchase intention, and characteristic of the product in the four dependent measurements used for the index of advertisement effects. In terms of the attitude towards advertisements, brand attitude, purchase intention, and the characteristic of the product according to the gender and value suggestion, functional convenience was more influential for men compared to the sentimental convenience and self-expressing value. On the other hand, self-expressing value was more influential for women in terms of the advertisement effect and the characteristic of the product. The main effects depending on the gender were common in four dependent values such as attitude towards advertisement, brand attitude, purchase intention and characteristic of the product, and the average of all values was higher from women. Thereby, it can be said that women show more positive advertisement effects in terms of attitude and purchase than men. The main effects on the value suggestion were meaningfully indicated in advertisement attitude, brand attitude, and characteristic of the product except the purchase intention. Also, the functional and self-expressing value made better advertisement effect, while the sentimental value showed a comparatively lower advertisement effect. In terms of the sentimental value, a comparatively low advertisement effect was shown statistically compared to the functional and self-expressing value in all dependent values, but there was no big difference depending on the gender. That is, in terms of the sentimental value, a separate value suggesting advertisement can be more influential when it is combined with the functional value for men, and for women if it is combined with self-expressing value.
스마트폰의 대중화로 SNS를 통해 유통되는 정보의 내용과 감성을 분석하는 연구가 활발하게 진행되고 있다. 이에 본 논문에서는 SW 교육에 관한 온라인 뉴스데이터를 수집하여 형태소 분석후 단어를 추출하고 뉴스데이터의 감성지수를 산출하여 수집된 뉴스 데이터의 감성분석을 실시하였다. 또한, 산출된 감성점수가 어느 정도 정확한지 정확도를 검토하였다. 분석 결과 수집기간동안 SW 교육 관련 뉴스는 월평균 약 189건 발생되었으며, 감성점수 평균은 0.7로 SW 교육 관련 뉴스는 긍정적임을 알 수 있었다. SW 교육의 중요성 및 정책 실행에는 공감하며 긍정적이었으나 구체적인 실행 방법에는 부정적인 시각이 있었다. 즉, SW 교육환경 및 교육방법 부족 문제, SW 개발자 양성 및 처우개선 문제, 코딩 사교육 증가 문제 등이었다.
Journal of the Korean Data and Information Science Society
/
제26권5호
/
pp.1167-1173
/
2015
정보통신기술의 발전은 SNS, 블로그, 게시판 등 자신의 생각이나 의견을 표출할 수 있는 장소의 다양성을 제공하였고 이는 빅데이터 성장을 가능케 하였다. 특히 매순간마다 엄청난 수의 사용자가 이용가능하고 다양한 이슈에 대한 의견을 작성할 수 있는 SNS의 특징으로 인해 많은 사람들이 트위터 등에 사회적 이슈에 대한 자신의 의견을 드러낸다. 따라서 본 연구에서는 트위터에서 작성되는 사회 이슈에 대한 의견을 수집하여 사회이슈를 주제로 하는 감성사전을 구축하고 구축된 감성사전을 통해 감성 분석을 실시하고자 한다. 사용된 데이터는 '비키니', '나꼼수'를 포함하는 트윗 글이다. 사회이슈에 특화된 주제지향 감성사전을 구축하고 구축된 감성사전을 통해 긍부정 의견을 분석한 결과 Precision은 61%로 나타났으며 F1-score는 74%의 성능을 보여주었다. 본 연구는 정치적 색을 띄고 있는 특정 사회 이슈에 대한 트윗 작성자의 의견이 긍정인지 부정인지 자동으로 분류할 수 있도록 하는 사전 구축의 하나의 기준을 제시할 것이라 기대한다.
최근 자연언어처리 분야에서 딥러닝 모델이 좋은 성과를 보이고 있다. 이러한 딥러닝 모델의 성능을 향상시키기 위해서는 많은 양의 데이터가 필요하다. 하지만 많은 양의 데이터를 모으기 위해서는 많은 인력과 시간이 소요되기 때문에 데이터 확장을 통해 이와 같은 문제를 해소할 수 있다. 그러나 문장 데이터의 경우 이미지 데이터에 비해 데이터 변형이 어렵기 때문에 다양한 문장을 생성할 수 있는 생성 모델을 통해 문장 데이터 자동 확장을 해보고자 한다. 본 연구에서는 최근 이미지 생성 모델에서 좋은 성능을 보이고 있는 생성적 적대 신경망 중 하나인 CS-GAN을 사용하여 학습 데이터로부터 새로운 문장들을 생성해 보고 유용성을 다양한 지표로 평가하였다. 평가 결과 CS-GAN이 기존의 언어 모델을 사용할 때보다 다양한 문장을 생성할 수 있었고 생성된 문장을 감성 분류기에 학습시켰을 때 감성 분류기의 성능이 향상됨을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.