• Title/Summary/Keyword: Sentiment word analysis

Search Result 125, Processing Time 0.024 seconds

A Deep Learning Model for Extracting Consumer Sentiments using Recurrent Neural Network Techniques

  • Ranjan, Roop;Daniel, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.238-246
    • /
    • 2021
  • The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.

Public Sentiment Analysis of Korean Top-10 Companies: Big Data Approach Using Multi-categorical Sentiment Lexicon (국내 주요 10대 기업에 대한 국민 감성 분석: 다범주 감성사전을 활용한 빅 데이터 접근법)

  • Kim, Seo In;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.45-69
    • /
    • 2016
  • Recently, sentiment analysis using open Internet data is actively performed for various purposes. As online Internet communication channels become popular, companies try to capture public sentiment of them from online open information sources. This research is conducted for the purpose of analyzing pulbic sentiment of Korean Top-10 companies using a multi-categorical sentiment lexicon. Whereas existing researches related to public sentiment measurement based on big data approach classify sentiment into dimensions, this research classifies public sentiment into multiple categories. Dimensional sentiment structure has been commonly applied in sentiment analysis of various applications, because it is academically proven, and has a clear advantage of capturing degree of sentiment and interrelation of each dimension. However, the dimensional structure is not effective when measuring public sentiment because human sentiment is too complex to be divided into few dimensions. In addition, special training is needed for ordinary people to express their feeling into dimensional structure. People do not divide their sentiment into dimensions, nor do they need psychological training when they feel. People would not express their feeling in the way of dimensional structure like positive/negative or active/passive; rather they express theirs in the way of categorical sentiment like sadness, rage, happiness and so on. That is, categorial approach of sentiment analysis is more natural than dimensional approach. Accordingly, this research suggests multi-categorical sentiment structure as an alternative way to measure social sentiment from the point of the public. Multi-categorical sentiment structure classifies sentiments following the way that ordinary people do although there are possibility to contain some subjectiveness. In this research, nine categories: 'Sadness', 'Anger', 'Happiness', 'Disgust', 'Surprise', 'Fear', 'Interest', 'Boredom' and 'Pain' are used as multi-categorical sentiment structure. To capture public sentiment of Korean Top-10 companies, Internet news data of the companies are collected over the past 25 months from a representative Korean portal site. Based on the sentiment words extracted from previous researches, we have created a sentiment lexicon, and analyzed the frequency of the words coming up within the news data. The frequency of each sentiment category was calculated as a ratio out of the total sentiment words to make ranks of distributions. Sentiment comparison among top-4 companies, which are 'Samsung', 'Hyundai', 'SK', and 'LG', were separately visualized. As a next step, the research tested hypothesis to prove the usefulness of the multi-categorical sentiment lexicon. It tested how effective categorial sentiment can be used as relative comparison index in cross sectional and time series analysis. To test the effectiveness of the sentiment lexicon as cross sectional comparison index, pair-wise t-test and Duncan test were conducted. Two pairs of companies, 'Samsung' and 'Hanjin', 'SK' and 'Hanjin' were chosen to compare whether each categorical sentiment is significantly different in pair-wise t-test. Since category 'Sadness' has the largest vocabularies, it is chosen to figure out whether the subgroups of the companies are significantly different in Duncan test. It is proved that five sentiment categories of Samsung and Hanjin and four sentiment categories of SK and Hanjin are different significantly. In category 'Sadness', it has been figured out that there were six subgroups that are significantly different. To test the effectiveness of the sentiment lexicon as time series comparison index, 'nut rage' incident of Hanjin is selected as an example case. Term frequency of sentiment words of the month when the incident happened and term frequency of the one month before the event are compared. Sentiment categories was redivided into positive/negative sentiment, and it is tried to figure out whether the event actually has some negative impact on public sentiment of the company. The difference in each category was visualized, moreover the variation of word list of sentiment 'Rage' was shown to be more concrete. As a result, there was huge before-and-after difference of sentiment that ordinary people feel to the company. Both hypotheses have turned out to be statistically significant, and therefore sentiment analysis in business area using multi-categorical sentiment lexicons has persuasive power. This research implies that categorical sentiment analysis can be used as an alternative method to supplement dimensional sentiment analysis when figuring out public sentiment in business environment.

Smart SNS Map: Location-based Social Network Service Data Mapping and Visualization System (스마트 SNS 맵: 위치 정보를 기반으로 한 스마트 소셜 네트워크 서비스 데이터 맵핑 및 시각화 시스템)

  • Yoon, Jangho;Lee, Seunghun;Kim, Hyun-chul
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.428-435
    • /
    • 2016
  • Hundreds of millions of new posts and information are being uploaded and propagated everyday on Online Social Networks(OSN) like Twitter, Facebook, or Instagram. This paper proposes and implements a GPS-location based SNS data mapping, analysis, and visualization system, called Smart SNS Map, which collects SNS data from Twitter and Instagram using hundreds of PlanetLab nodes distributed across the globe. Like no other previous systems, our system uniquely supports a variety of functions, including GPS-location based mapping of collected tweets and Instagram photos, keyword-based tweet or photo searching, real-time heat-map visualization of tweets and instagram photos, sentiment analysis, word cloud visualization, etc. Overall, a system like this, admittedly still in a prototype phase though, is expected to serve a role as a sort of social weather station sooner or later, which will help people understand what are happening around the SNS users, systems, society, and how they feel about them, as well as how they change over time and/or space.

Sensitivity of abacus and Chasdaq in the Chinese stock market through analysis of Weibo sentiment related to Corona-19 (코로나-19관련 웨이보 정서 분석을 통한 중국 주식시장의 주판 및 차스닥의 민감도 예측 기법)

  • Li, Jiaqi;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Investor mood from social media is gaining increasing attention for leading a price movement in stock market. Based on the behavioral finance theory, this study argues that sentiment extracted from social media using big data technique can predict a real-time (short-run) price momentum in Chinese stock market. Collecting Sina Weibo posts that related to COVID-19 using keyword method, a daily influential weighted sentiment factors is extracted from the sizable raw data of over 2 millions of posts. We examine one supervised and 4 unsupervised sentiment analysis model, and use the best performed word-frequency and BiLSTM mdoel. The test result shows a similar movement between stock price change and sentiment factor. It indicates that public mood extracted from social media can in some extent represent the investors' sentiment and make a difference in stock market fluctuation when people are concentrating on a special events that can cause effect on the stock market.

Developing Sentimental Analysis System Based on Various Optimizer

  • Eom, Seong Hoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.100-106
    • /
    • 2021
  • Over the past few decades, natural language processing research has not made much. However, the widespread use of deep learning and neural networks attracted attention for the application of neural networks in natural language processing. Sentiment analysis is one of the challenges of natural language processing. Emotions are things that a person thinks and feels. Therefore, sentiment analysis should be able to analyze the person's attitude, opinions, and inclinations in text or actual text. In the case of emotion analysis, it is a priority to simply classify two emotions: positive and negative. In this paper we propose the deep learning based sentimental analysis system according to various optimizer that is SGD, ADAM and RMSProp. Through experimental result RMSprop optimizer shows the best performance compared to others on IMDB data set. Future work is to find more best hyper parameter for sentimental analysis system.

Sentiment Analysis on Movie Reviews Using Word Embedding and CNN (워드 임베딩과 CNN을 사용하여 영화 리뷰에 대한 감성 분석)

  • Ju, Myeonggil;Youn, Seongwook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • Reaction of people is importantly considered about specific case as a social network service grows. In the previous research on analysis of social network service, they predicted tendency of interesting topic by giving scores to sentences written by user. Based on previous study we proceeded research of sentiment analysis for social network service's sentences, which predict the result as positive or negative for movie reviews. In this study, we used movie review to get high accuracy. We classify the movie review into positive or negative based on the score for learning. Also, we performed embedding and morpheme analysis on movie review. We could predict learning result as positive or negative with a number 0 and 1 by applying the model based on learning result to social network service. Experimental result show accuracy of about 80% in predicting sentence as positive or negative.

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

Sentiment Analysis of the Quotations of Intensive Care Unit Survivors in Qualitative Studies (질적연구 진술문을 이용한 중환자실 생존자의 감성분석)

  • Kang, Jiyeon
    • Journal of Korean Critical Care Nursing
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Purpose : As the intensive care unit (ICU) survival rate increases, interest in the lives of ICU survivors has also been increasing. The purpose of this study was to identify the sentiment of ICU survivors. Method : The author analyzed the quotations from previous qualitative studies related to ICU survivors; a total of 1,074 sentences comprising 429 quotations from 25 relevant studies were analyzed. A word cloud created in the R program was utilized to identify the most frequent adjectives used, and sentiment and emotional scores were calculated using the Artificial Intelligence (AI) program. Results : The 10 adjectives that appeared the most in the quotations were 'difficult', 'different', 'normal', 'able', 'hard', 'bad', 'ill', 'better', 'weak', and 'afraid', in order of decreasing occurrence. The mean sentiment score was negative ($-.31{\pm}.23$), and the three emotions with the highest score were 'sadness'($.52{\pm}.13$), 'joy'($.35{\pm}.22$), and 'fear'($.30{\pm}.25$). Conclusion : The natural language processing of AI used in this study is a relatively new method. As such, it is necessary to refine the methodology through repeated research in various nursing fields. In addition, further studies on nursing interventions that improve the coherency of ICU memory of survivors and familial support for the ICU survivors are needed.

A Sentence Sentiment Classification reflecting Formal and Informal Vocabulary Information (형식적 및 비형식적 어휘 정보를 반영한 문장 감정 분류)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.325-332
    • /
    • 2011
  • Social Network Services(SNS) such as Twitter, Facebook and Myspace have gained popularity worldwide. Especially, sentiment analysis of SNS users' sentence is very important since it is very useful in the opinion mining. In this paper, we propose a new sentiment classification method of sentences which contains formal and informal vocabulary such as emoticons, and newly coined words. Previous methods used only formal vocabulary to classify sentiments of sentences. However, these methods are not quite effective because internet users use sentences that contain informal vocabulary. In addition, we construct suggest to construct domain sentiment vocabulary because the same word may represent different sentiments in different domains. Feature vectors are extracted from the sentiment vocabulary information and classified by Support Vector Machine(SVM). Our proposed method shows good performance in classification accuracy.