• 제목/요약/키워드: Sentence Generation

검색결과 106건 처리시간 0.026초

확장 동사형에 기반한 동사사전과 영어 문장 검사기 (English Critique and Verb Dictionary based on Extended Verb Pattern)

  • 차의영
    • 인지과학
    • /
    • 제3권2호
    • /
    • pp.311-328
    • /
    • 1992
  • 인간이나 기계변역기에 의해 생성되는 영어 문장은 이들이 가지고 있는 동사사전의 내용과 효율적인 생성 알고리즘에 의해서 문장의 수준이나 정확성이 결정된다.이렇게 생성된 문장을 검사하는 기존의 영어 문법검사기들은 문자의 문형을 결정하는 중요한 요소인 동사형이나 문법적인 중요한 규정들을 포함하지 않고 있어서 비영어권의 사용자가 이용하기에는 부적절하다.본 논문에서는 인간이 번역하였거나 기계 번역기에 의해 생성된 문자을 검사하고 교정할 수 있도록,확장 동사형을 기반으로 한 동사 사전을 제안하고 이를 이용하여 영어 문장의 검사에 적용하는 방안에 대해 연구한다.

How is 'Contrast' Imposed on -Nun?

  • Kim, Ji-Eun
    • 한국언어정보학회지:언어와정보
    • /
    • 제16권1호
    • /
    • pp.1-24
    • /
    • 2012
  • -Nun is generally known as a Topic marker in Korean. However, when it is combined with an accent, it is thought to have a different function, which is alleged to indicate 'contrast' (Kuno 1972). Although the fact that -nun marked item generates some kind of 'contrastive meaning' is uncontroversial, what 'contrast(ive)' means is still unclear. In t his paper, I propose that accented -nun generates two types of implicit propositions in addition to its at-issue meaning. A simple sentence has been repeatedly tested in various models in order to see what type of proposition each proposition corresponds to and it has been concluded that one is presupposition and the other is implicature. This tedious-looking test forms the main part of the first-half of this paper. The presupposition is the essential factor for the -nun marked item to obtain the 'contrastive' meaning. Based on the generation of this presupposition, I argue that -nun works as a contrast operator in a sentence. To illustrate -nun's function as a contrast operator forms the latter part of this paper.

  • PDF

Sentence- Final Intonation Contours: Formal Description

  • Park, Say-hyon
    • 음성과학
    • /
    • 제1권
    • /
    • pp.39-53
    • /
    • 1997
  • As the segmental phonetic output is derived from its underlying form, the phonetic surface of intonation could also be derived from its underlying tone melody. In order to show clearly the phonological processes (in fact, we need more than just phonological processes) involved in the generation of intonational surface, we need to formalize the description of those processes. This paper firstly examines different types of sentence-final intonation contour in Korean, and then attempt to formalize the intonational behavior of those contours. In this attempt, we will investigate what kinds of linguistic information participate in deciding the shapes of the. contours and what kinds of tonological processes the underlying tone melody undergoes before it takes the surface shape. In this analysis of intonation contours, we focus on the linguistic structure rather than the acoustic property, adopting just two tones L and H as phonological tones, with four phonetic pitches.

  • PDF

단어 간 관계 패턴 학습을 통한 하이퍼네트워크 기반 자연 언어 문장 생성 (Hypernetwork-based Natural Language Sentence Generation by Word Relation Pattern Learning)

  • 석호식;작가멧;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권3호
    • /
    • pp.205-213
    • /
    • 2010
  • 본 논문에서는 단어간 관계 패턴을 학습한 후 이에 기반하여 자연 언어 문장을 생성하는 방법을 소개한다. 기존의 문장 생성 방법론에서는 내재된 문법 규칙의 존재를 가정하거나 템플릿을 사용하고 있으나, 본 논문에서 소개하는 방법론에서는 태깅 등의 부가 정보 없이 단어의 동시 등장 빈도만을 활용하여 단어간 관계 패턴을 학습한다. 단어간 관계 패턴은 하이퍼네트워크 방법론에 기반하여 학습되었다. 학습이 진행됨에 따라 하이퍼네트워크의 복잡도가 높아지며, 학습 모델에 축적되는 언어 관계 패턴의 수가 증가한다. 학습된 모텔의 유효성은 학습 패턴에 기반한 자연 언어 문장 생성을 통해 확인하였다. 실험 결과 학습이 진행됨에 따라 문법적으로 성립하는 문장의 비율이 향상하였다. 파서를 이용하여 생성된 문장을 구성하는 문법 규칙을 분석한 후 문법 규칙의 분포를 학습에 사용한 코퍼스의 문법 규칙 분포와 비교한 결과 학습에 사용된 코퍼스의 문법적 특성을 학습할 수 있는 잠재력을 갖고 있음을 확인하였다.

Design of a Question-Answering System based on RAG Model for Domestic Companies

  • Gwang-Wu Yi;Soo Kyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.81-88
    • /
    • 2024
  • 생성형 AI 시장의 급속한 성장과 국내 기업과 기관의 큰 관심에도 불구하고, 부정확한 정보제공과 정보유출의 우려가 생성형 AI 도입을 저해하는 주된 요인으로 나타났다. 이를 개선하기 위해 본 논문에서는 검색-증강 생성(Retrieval-Augmented Generation, RAG) 구조 기반의 질의응답시스템을 설계·구현하였다. 제안 방법은 한국어 문장 임베딩을 사용해 지식 데이터베이스를 구축하고, 최적화된 검색으로 질문 관련 정보를 찾아 생성형 언어 모델에게 제공된다. 또한, 이용자가 지식 데이터 베이스를 직접 관리하여 변경되는 업무 정보를 효율적으로 업데이트하도록 하고, 시스템이 폐쇄망에서 동작할 수 있도록 설계하여 기업의 기밀 정보의 유출 가능성을 낮추었다. 국내 기업 등 조직에서 생성형 AI를 도입하고 활용하고자 할 때 본 연구가 유용한 참고자료가 되길 기대한다.

음성인식을 이용한 자막 자동생성 시스템 (Subtitle Automatic Generation System using Speech to Text)

  • 손원섭;김응곤
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.81-88
    • /
    • 2021
  • 최근 COVID-19로 인한 온라인 강의 영상과 같은 많은 영상이 생성되고 있는데 노동 시간의 한계와 비용의 부족 등으로 인해 자막을 보유한 영상이 일부분에 불과하여 청각장애인들의 정보 취득에 방해 요소로 대두되고 있다. 본 논문에서는 음성인식을 이용하여 자막을 자동으로 생성하고 종결 어미와 시간을 이용해 문장을 분리하여 자막을 생성함으로써 자막 생성에 드는 시간과 노동력을 줄일 수 있도록 하는 시스템을 개발하고자 한다.

한글 텍스트 감정 이진 분류 모델 생성을 위한 미세 조정과 전이학습에 관한 연구 (A Study on Fine-Tuning and Transfer Learning to Construct Binary Sentiment Classification Model in Korean Text)

  • 김종수
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.15-30
    • /
    • 2023
  • 근래에 트랜스포머(Transformer) 구조를 기초로 하는 ChatGPT와 같은 생성모델이 크게 주목받고 있다. 트랜스포머는 다양한 신경망 모델에 응용되는데, 구글의 BERT(bidirectional encoder representations from Transformers) 문장생성 모델에도 사용된다. 본 논문에서는, 한글로 작성된 영화 리뷰에 대한 댓글이 긍정적인지 부정적인지를 판단하는 텍스트 이진 분류모델을 생성하기 위해서, 사전 학습되어 공개된 BERT 다국어 문장생성 모델을 미세조정(fine tuning)한 후, 새로운 한국어 학습 데이터셋을 사용하여 전이학습(transfer learning) 시키는 방법을 제안한다. 이를 위해서 104 개 언어, 12개 레이어, 768개 hidden과 12개의 집중(attention) 헤드 수, 110M 개의 파라미터를 사용하여 사전 학습된 BERT-Base 다국어 문장생성 모델을 사용했다. 영화 댓글을 긍정 또는 부정 분류하는 모델로 변경하기 위해, 사전 학습된 BERT-Base 모델의 입력 레이어와 출력 레이어를 미세 조정한 결과, 178M개의 파라미터를 가지는 새로운 모델이 생성되었다. 미세 조정된 모델에 입력되는 단어의 최대 개수 128, batch_size 16, 학습 횟수 5회로 설정하고, 10,000건의 학습 데이터셋과 5,000건의 테스트 데이터셋을 사용하여 전이 학습시킨 결과, 정확도 0.9582, 손실 0.1177, F1 점수 0.81인 문장 감정 이진 분류모델이 생성되었다. 데이터셋을 5배 늘려서 전이 학습시킨 결과, 정확도 0.9562, 손실 0.1202, F1 점수 0.86인 모델을 얻었다.

기술 용어에 대한 한국어 정의 문장 자동 생성을 위한 순환 신경망 모델 활용 연구 (Research on the Utilization of Recurrent Neural Networks for Automatic Generation of Korean Definitional Sentences of Technical Terms)

  • 최가람;김한국;김광훈;김유일;최성필
    • 한국문헌정보학회지
    • /
    • 제51권4호
    • /
    • pp.99-120
    • /
    • 2017
  • 본 논문에서는 지속적으로 커져가는 산업 시장에 대해 관련 연구자들이 이를 효율적으로 분석할 수 있는 반자동 지원 체제개발을 위한 기술 용어와 기술 개념에 대한 정의문 및 설명문을 자동으로 생성하는 한국어 문장 생성 모델을 제시한다. 한국어 정의 문장 생성을 위하여 딥러닝 기술 중 데이터의 전/후 관계를 포함한 시퀀스 레이블링이 가능한 LSTM을 활용한다. LSTM을 근간으로 한 두 가지 모델은 기술명을 입력할 시 그에 대한 정의문 및 설명문을 생성한다. 다양하게 수집된 대규모 학습 말뭉치를 이용해 실험한 결과, 본 논문에서 구현한 2가지 모델 중 CNN 음절 임베딩을 활용한 어절 단위 LSTM 모델이 용어에 대한 정의문 및 설명문을 생성하는데 더 나은 결과를 도출시킨다는 사실을 확인하였다. 본 논문의 연구 결과를 바탕으로 동일한 주제를 다루는 문장 집합을 생성할 수 있는 확장 모델을 개발할 수 있으며 더 나아가서는 기술에 대한 문헌을 자동으로 작성하는 인공지능 모델을 구현할 수 있으리라 사료된다.

홈쇼핑 사이트를 위한 데이터베이스로부터의 한국어 텍스트 생성 (Korean Text Generation from Relational Database for Homeshopping Sites)

  • 노지은;강신재;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.373-375
    • /
    • 2001
  • 국내에서는 한국어 생성에 있어서 기계 번역에 기반한 자연스러운 한국어 문장(sentence)의 생성에 관한 연구가 주로 이루어졌었다. 반면에 다양한 지식원으로부터 여러 문장이 긴밀히 결합되어 하나의 텍스트를 생성하는 텍스트 생성에 관한 연구는 거의 이루어지지 않았었다. 문장 단위의 기계 번역에서의 한국어 생성과는 또 다른 다양한 논점을 가지고있는 텍스트 생성에 관해, 본 논문에서는 테이터베이스를 지식원으로 하여 하나의 일관된 정보를 전달하는 단락 단위의 자연스러운 한국어 텍스트를 생성하는 시스템을 제안한다.

  • PDF

문장 생성 모델 학습 및 관광지 리뷰 데이터를 활용한 관광지 분류 기법 (Tourist Attraction Classification using Sentence Generation Model and Review Data)

  • 문준형;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.745-747
    • /
    • 2023
  • 여러 분야에서 인공지능 모델을 활용한 추천 방법들이 많이 사용되고 있다. 본 논문에서는 관광지의 대중적이고 정확한 추천을 위해 GPT-3 와 같은 생성 모델로 생성한 가상의 리뷰 문장을 통해 KoBERT 모델을 학습했다. 생성한 데이터를 통한 KoBERT 의 학습 정확도는 0.98, 테스트 정확도는 0.81 이고 실제 관광지별 리뷰 데이터를 활용해 관광지를 분류했다.