• Title/Summary/Keyword: Sensorless Vector Control

Search Result 253, Processing Time 0.022 seconds

Design of PMSM Control System Using Sensorless control (Sensorless 제어를 이용한 PMSM 모터 제어기 설계)

  • 김대웅;박성준;이영진;원태현;박한웅;정태욱;백승면;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.108-108
    • /
    • 2000
  • This application study presents a solution to control a Permanent Magnet Synchronous Motor without sensors. The use of this system yields enhanced operations, fewer system components, lower system cost, energy efficient control system design and increased efficiency. The control method presented is field oriented control (FOC). The sinusoidal voltage waveforms are generated by the power module using the space vector modulation technique. A practical solution is described and results are given in this application Study. The performance of a Sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using cheaper electrical motors without sensors. This paper deals with an overview of sensorless solutions in digital motor control applications whereby the focus will be the new Controller without sensors and its applications.

Sensorless Vector Control of Spindle Induction Motors Using Rotor Flux Observer with a Variable Bandwidth (가변게인 회전자 자속관측기에 근거한 스핀들 유도전동기의 센서리스 속도제어)

  • Yu, Jae-Sung;Sin, Soo-Cheol;Lee, Won-Cheol;Park, Sang-Hoon;Won, Chung-Yuen;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.417-425
    • /
    • 2006
  • This paper presents a new speed sensorless vector control scheme of Spindle Induction Motors(SIM) which can be successfully applied to at any speed including even zero speed. The proposed sensorless vector control of SIM uses rotor flux estimator with a variable bandwidth. This approach is based on the Closed-Loop Rotor Flux Observer(CLRFO) which includes a variable bandwidth of the PI controller. For low speed operation, the bandwidth of CLRFO has a variable bandwidth structure according to the estimated rotor velocity. The experimental results show the satisfactory operation of the proposed sensorless algorithm.

Position and Speed Sensorless Vector Control of SynRM for Efficiency Optimization Control (효율 최적화 제어를 위한 SynRM의 위치 및 속도 센서리스 벡터제어)

  • Lee , Jung-Chul;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.59-70
    • /
    • 2002
  • This paper proposes a position and speed sensorless vector control for Synchronous Reluctance Motor(SynRM) operating at optimum efficiency and high response, in which core loss is taken into account, and discusses the performance of system. The proposed control scheme is based on the flux estimation combined stator voltage and current. In this paper, current angle condition of efficiency optimization which minimizes the copper and iron losses is derived based on the equivalent circuit model of the SynRM. The research result of closed loop position and speed control with efficiency optimization control is given to verify the proposed scheme.

The rotor time constant compensation in sensorless vector control using stator current based MRAC (고정자 전류 기반의 MRAC를 이용한 유도전동기의 센서리스 벡터제어에서 회전자 시정수의 보상)

  • Park Chul-woo;Youn Kyung-sup;Im Sung-woon;Ku Bon-ho;Kwon Woo-hyen
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.192-195
    • /
    • 2002
  • The thesis proposes the sensorless vector control method that estimates the rotor speed and rotor time constant at the same time using stator current. In the proposed method, stator current error in the stationary reference frame is proportional to estimated speed error, and stator current error in the synchronous reference frame is proportional to estimated rotor time constant error. The proposed method can simultaneously produce a fast speed estimation and rotor time constant estimation. Therefore, this new method offers an improvement in the performance of a sensorless vector controller. And, the superiority of the proposed method is verified by simulation.

  • PDF

SENSORLESS SPEED CONTROL OF INDUCTION MOTOR WITH SPEED ESTIMATOR (자속추정기에 의한 유도전동기 센서리스 속도제어)

  • 김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.432-439
    • /
    • 1999
  • Several methods of induction motor drives which used speed estimators instead of shaft encoders have been reported. However those speed sensorless systems with estimators employing stator voltates and currents usually deteriorates as the speed gets lower because it is difficult to calculate the accurate rotor flux under the influence of DC-offset and saturation of integrators. In this paper to calculate rotor flux at low speed the new rotor flux estimator which replaces integra-tors with two lag circuits is proposed. Simulation and experiment results confirm the validity of this control scheme.

  • PDF

A Speed Sensorless Control of Induction Motors Based on Feedforward Quick Torque Response Control Technique (피드포워드적 토크고속응답제어법을 이용한 유도전동기의 속도센서레스 제어)

  • Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.70-78
    • /
    • 1999
  • The vector controlled induction motor(I.M) with speed sensor has been widely used for variable speed drive systems. In these application fileds, speed sensorless control are expected strongly to progress reliability, simplicity and cost performance of I.M and to expand its application part. This paper describes a novel speed sensorless control method of I.M based on feedforward quick torque response control technique. Especially, this paper aimed at the realization of sensorless control in the very low speed region, The proposed method can be formulated simply from a motor circuit equation and conducted easily by detecting primary motor currents and a voltage command at every sampling time. Throughout some results of numerical simulations with the assumption of using a pulse width modulation(PWM) voltage source inverter, the validity of the method was successfully confirmed.

  • PDF

PMSM Sensorless Operation for High Variable Speed Compressor (고속압축기 구동 PMSM을 위한 센서리스 운전)

  • 석줄기;이동춘;황준현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.676-681
    • /
    • 2002
  • This paper presents the implementation and experimental investigation of sensorless speed control for a variable-speed PMSM(Permanent Magnet Synchronous Motor) in super-high speed compressor operation. The proposed control scheme consists of two different sensorless algorithms to guarantee the reliable starting operation in low speed region and full torque characteristics using the vector control in high speed region. An automatic switching technique between two control modes is proposed to minimize the speed and torque pulsation during the switching instant of control mode. A testing system of 3.3㎾ PMSM has been built and 90% load test results at 7000r/min are presented to examine the feasibility of proposed sensorless control scheme.

Speed Sensorless Vector Control of Induction Motor Using MATLAB/SIMULINK and dSPACE DS1104 (MATLAB/SIMULINK와 dSPACE DS1104를 이용한 유도 전동기의 속도 센서리스 벡터제어)

  • Lee, Dong-Min;Lee, Yong-Suk;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2007
  • This paper presents a implementation of speed sensorless vector control of induction motor using MATLAB/SIMULINK and dSPACE DS1104. Proposed flux estimation algorithm, which utilize the combination of the voltage model based on stator equivalent model and the current model based on rotor equivalent model, enables stable estimation of rotor flux. Proposed rotor speed estimation algorithm utilizes the estimated flux. And the estimated rotor speed is used to speed control of induction motor. Overall system consists of speed controller, current controller, and flux controller using the most general PI controller. Speed sensorless vector control algorithm is implemented as block diagrams using MATLAB/SIMULINK. And realtime control is performed by dSPACE DS1104 control board and Real-Time-Interface(RTI).

  • PDF

Sensorless Control Using the Back EMF of PM Generator for 2MW Variable Speed Wind Turbine (역기전력을 이용한 2MW급 가변속 풍력터빈용 영구자석 동기기의 센서리스 제어)

  • Im, Ji-Hoon;Oh, Sang-Geun;Song, Seung-Ho;Lee, Hyen-Young;Kwon, Oh-Jeong;Jang, Jeong-Ik;Lee, Kwon-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.2
    • /
    • pp.54-60
    • /
    • 2011
  • A PMSG in variable speed wind turbine needs to know the position of rotor for vector control. Since the position sensor has the disadvantage in terms of cost, complexity of the system, a sensorless algorithm is needed. The sensorless strategy using the back EMF estimation is used for PMSG Wind Turbine. This algorithm is comparatively easy to implement than other strategies. This paper introduces the application of stable sensorless control for 2MW direct drive PMSG. In order to confirm the sensorless algorithm, the implementation is proceeded using 2MW direct drive PMSG from no-load condition to full-load condition. To drive 2MW PMSG artificially, 2MW PMSG connected PMSG through the mechanical coupling.

A Compensation Method of Parameter Variations for the Speed-Sensorless Vector Control System of Induction Motors using Zero Sequence Third Harmonic Voltages (영상분 3고조파 전압을 이용한 속도센서없는 유도전동기 벡터제어 시스템의 파라미터 변동 보상)

  • Choe, Jeong-Su;Kim, Jin-Su;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.75-82
    • /
    • 1999
  • A compensation method of the motor parameters using zero sequence third harmonic voltage is presented for the speed sensorless vector control of the induction motor considering saturation of the flux. Generally, the air-gap flux of the saturated induction motor contains the space harmonic components rotating with the synchronous frequency of the motor. Because the EMF of the saturated induction motor contains the zero sequence harmonic voltages at the neutral point of the motor, those harmonic voltages can be used as a saturation index. In this work, the rotor flux observer is firstly designed for the speed sensorless vector control of induction motor. And a novel measurement method of the space harmonic voltage and a compensation method of th LPF(Low Pass Filter) are proposed. For compensating the non-linear variations of the magnetizing inductance depending on the saturation level of the motor, the dominant third harmonic voltage of the motor is used as a saturation function of the air-gap flux. And the variation of the stator resistance owing to the motor temperature can also be measured with the phase angle between the impressed voltage vector and the zero sequence voltage. The validity of the proposed parameter compensation scheme in the speed sensorless vector control using rotor flux observer is verified by the result of the simulations and the experiments.

  • PDF