• 제목/요약/키워드: Sensor-based

검색결과 10,228건 처리시간 0.037초

하이브리드 빅데이터 분석을 통한 홍수 재해 예측 및 예방 (Flood Disaster Prediction and Prevention through Hybrid BigData Analysis)

  • 엄기열;이재현
    • 한국빅데이터학회지
    • /
    • 제8권1호
    • /
    • pp.99-109
    • /
    • 2023
  • 최근에 우리나라에서 뿐만 아니라, 세계 곳곳에서 태풍, 산불, 장마 등으로 인한 재해가 끊이지 않고 있고, 우리나라 태풍 및 호우로 인한 재산 피해액만 1조원이 넘고 있다. 이러한 재난으로 인해 많은 인명 및 물적 피해가 발생하고, 복구하는 데도 상당한 기간이 걸리며, 정부 예비비도 부족한 실정이다. 이러한 문제점들을 사전에 예방하고 효과적으로 대응하기 위해서는 우선 정확한 데이터를 실시간 수집하고 분석하는 작업이 필요하다. 그러나, 센서들이 위치한 환경, 통신 네트워크 및 수신 서버들의 상황에 따라 지연 및 데이터 손실 등이 발생할 수 있다. 따라서, 본 논문에서는 이러한 통신네트워크 상황에서도 분석을 정확하게 할 수 있는 2단계 하이브리드 상황 분석 및 예측 알고리즘을 제안한다. 1단계에서는 이기종의 다양한 센서로부터 강, 하천, 수위 및 경사지의 경사각 데이터를 수집/필터링/정제하여 빅데이터 DB에 저장하고, 인공지능 규칙기반 추론 알고리즘을 적용하여, 위기 경보 4단계를 판단한다. 강수량이 일정값 이상인데도 불구하고 1단계 결과가 관심 이하 단계에 있으면, 2단계 딥러닝 영상 분석을 수행한 후 최종 위기 경보단계를 결정한다.

연소IC를 이용한 플라스틱 중 할로겐 물질 정량 (Determination of halogen elements in plastics by using combustion ion chromatography)

  • 정재학;김효경;이양형;이임수;신종근;이상학
    • 분석과학
    • /
    • 제21권4호
    • /
    • pp.284-295
    • /
    • 2008
  • 플라스틱 시료 중 각종 유해물질 유무 확인을 위한 여러 가지 시험항목을 저비용으로 빠르게 분석할 수 있는 방법으로 Combustion ion chromatography(연소IC)를 사용한 방법을 채택하였다. F, Cl 및 Br의 3개 항목에 대하여 연소IC로 시험법 유효화 검증을 실시한 결과, 검량선은 0.5~4.0 mg/kg 농도범위에서 $r^2$ = 0.999~1.000의 상관관계 계수를 갖는 좋은 직선성을 나타내었으며, 검출한계는 0.005~0.024 mg/kg, 정량한계는 0.014~0.073 mg/kg 이였다. 인증표준물질(CRM)을 사용한 연소IC의 회수율은 95.5~104.9%이었다. 본 결과를 토대로 국내외 시험기관간 비교 숙련도 시험을 실시하였으며, 그 결과 연소IC 방법이 전기전자제품 중에 halogen-free 및 기타 유해물질 규제 대응을 위한 효율적인 분석방법임을 확인하였다.

FBG 변형률센서를 이용한 현수교의 정적 처짐형상 추정 (Prediction of the Static Deflection Profiles on Suspension Bridge by Using FBG Strain Sensors)

  • 조남소;김남식
    • 대한토목학회논문집
    • /
    • 제28권5A호
    • /
    • pp.699-707
    • /
    • 2008
  • 교량구조물의 안전성 평가에 있어서 처짐형상을 측정하는 것은 매우 중요한 요소이다. 그러나 교량의 처짐을 측정하는 작업은 일반적으로 용이하지 않으며, 경우에 따라서 측정점이 제한되거나 많은 비용이 소요된다. 따라서 최근에 광섬유 변형률센서를 이용한 교량의 처짐형상을 간접적으로 추정하는 연구가 진행되고 있으나 단순지지 형식의 교량에 주로 적용되고 있다. 본 연구에서는 현수교의 고전적인 처짐이론을 적용하여 측정된 변형률로부터 처짐형상을 추정하는 기법을 제시하였으며, 이에 대한 검증을 위하여 남해대교를 대상으로 현장 재하시험을 수행하였다. 남해대교 보강형 내부에 부착한 FBG 변형률센서를 이용하여 변형률을 계측하였으며, 제안한 추정기법을 적용하여 얻어진 처짐형상을 정밀측량데이터 및 구조해석결과와 비교분석하였다. 결과적으로 본 연구에서 제안한 현수교 처짐형상 추정기법의 적용가능성을 검증하였으며, FBG 변형률센서의 현장 적용성을 확인하였다.

Photosynthesis Monitoring of Rice using SPAR System to Respond to Climate Change

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tag Youn
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.169-169
    • /
    • 2022
  • Over the past 100 years, the global average temperature has risen by 0.75 ℃. The Korean Peninsula has risen by 1.8 ℃, more than twice the global average. According to the RCP 8.5 scenario, the CO2 concentration in 2100 will be 940 ppm, about twice as high as current. The National Institute of Crop Science(NICS) is using the SPAR (Soil-Plant Atmosphere Research) facility that can precisely control the environment, such as temperature, humidity, and CO2. A Python-based colony photosynthesis algorithm has been developed, and the carbon and nitrogen absorption rate of rice is evaluated by setting climate change conditions. In this experiment, Oryza Sativa cv. Shindongjin were planted at the SPAR facility on June 10 and cultivated according to the standard cultivation method. The temperature and CO2 settings are high temperature and high CO2 (current temperature+4.7℃ temperature+4.7℃·CO2 800ppm), high temperature single condition (current temperature+4.7℃·CO2 400ppm) according to the RCP8.5 scenario, Current climate is set as (current temperature·CO2400ppm). For colony photosynthesis measurement, a LI-820 CO2 sensor was installed in each chamber for setting the CO2 concentration and for measuring photosynthesis, respectively. The colony photosynthetic rate in the booting stage was greatest in a high temperature and CO2 environment, and the higher the nitrogen fertilization level, the higher the colony photosynthetic rate tends to be. The amount of photosynthesis tended to decrease under high temperature. In the high temperature and high CO2 environment, seed yields, the number of an ear, and 1000 seed weights tended to decrease compared to the current climate. The number of an ear also decreased under the high temperature. But yield tended to increase a little bit under the high temperature and high CO2 condition than under the high temperature. In addition, In addition to this study, it seems necessary to comprehensively consider the relationship between colony photosynthetic ability, metabolite reaction, and rice yield according to climate change.

  • PDF

Radiometric Tarp를 이용한 현장관측 기반의 차세대중형위성 1호 절대복사보정 사례 연구 (A Case Study on Field Campaign-Based Absolute Radiometric Calibration of the CAS500-1 Using Radiometric Tarp)

  • 전우진;염종민;정재헌;진경욱;한경수
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1273-1281
    • /
    • 2023
  • 절대복사검보정은 위성 센서에서 얻은 전자기 신호의 물리량 변환을 위해 절대복사보정 계수를 결정하는 작업으로 위성 데이터의 정확도 개선 및 다른 위성 데이터와의 비교 및 통합을 위해 수행되어야 한다. 또한, 위성 센서는 시간에 따른 센서 노후화나 환경 조건의 영향을 받아 초기 설정된 보정 계수가 변화할 수 있으므로 주기적으로 이러한 변화를 모니터링 하는 것이 필수적이다. 이 연구에서는 차세대중형위성 1호(CAS500-1)의 다중 분광 채널에 대한 vicarious calibration을 수행하기 위해 필드 캠페인을 수행하였다. 구름이 없는 맑은 날의 조건 하에 총 두 차례의 유효한 현장 관측 자료를 얻었으며, MODTRAN 6 복사전달모델을 활용하여 대기 상단(top-of-atmosphere, TOA) radiance를 모의하였다. 모의된 TOA radiance와 CAS500-1의 digital number (DN)는 선형성은 보였지만, CAS500-1 영상의 넓은 시야각과 saturation 발생으로 향후 변환 계수의 보완이 필요한 것으로 보인다. 하지만, 본 연구는 CAS500-1의 절대복사보정에 대한 첫 시도를 하였으며, 향후 높은 신뢰성을 가진 계수 결정을 목표로 하는 연구들에 유용한 정보를 제공할 것으로 기대된다.

인공지능 기반의 GEMS 산불연기 및 황사 탐지 (Artificial Intelligence-Based Detection of Smoke Plume and Yellow Dust from GEMS Images)

  • 정예민;윤유정;김서연;강종구;최소연;임윤교;서영민;유정아;성경희;김상민;이양원
    • 대한원격탐사학회지
    • /
    • 제39권5_2호
    • /
    • pp.859-873
    • /
    • 2023
  • 산불은 오랜 기간동안 사회 및 경제적으로 지구에 많은 피해를 야기하며, 이러한 산불은 자연적 혹은 인위적으로 발생되어왔다. 이로 인해 여러 실험들에서 산불로 인한 악영향에 관한 연구들을 진행하였으며, 동시에 산불 발생 시 빠른 대처를 위한 산불탐지 및 오염배출 물질 탐지 등과 같은 연구들도 수행되었다. 그러나 현재까지 한국 및 동아시아 영역을 배경으로 한 연구는 부족한 실정이고 산불 탐지에 활용되는 자료들의 정확도에 한계가 있었다. 본 연구에서는 정지궤도 환경위성(Geostationary Environment Monitoring Spectrometer, GEMS) 영상에 위색합성기법을 활용해 새로운 산불연기 탐지 산출물을 생성하고 해당 영상을 U-Net 모델링에 활용해 기존의 연구들에서 산불 탐지시에 활용했던 가시광선 채널 영상의 한계를 보완하였다. 그리고 U-Net 모델링을 통해 산출된 산불연기 영역으로부터 황사 픽셀 필터링을 수행하는 분류모델을 구축하여 순수 산불연기 탐지 영상을 산출하였으며, 이는 GEMS 기반의 재난감시에 활용될 수 있을 것으로 기대한다.

아세톤의 선택적 감지를 위한 In2O3 zig-zag nanocolumns (Highly ordered In2O3 zig-zag nanocolumns for selective detection of acetone )

  • 정재한;김호균;조윤행;황준호;박시형;손성우;정수빈;이은솔;이광재;심영석
    • 한국표면공학회지
    • /
    • 제57권1호
    • /
    • pp.38-48
    • /
    • 2024
  • We fabricated In2O3 zig-zag nanocolumns(ZZNCs) by oblique angle deposition method based on e-beam evaporator for highly sensitive and selective CH3COCH3 sensor. Our results indicate that as the ZZNCs layer stacks, the gas response also increases. In comparison to thin films, ZZNCs at 5 layer show a 117-fold enhancement in gas response and a rapid response time (~2 s). When measured with various gases, it showed a high selectivity towards acetone. Under conditions of 80% R.H., exposure to CH3COCH3 gas theoretically indicated a detection limit of 1.2 part-per-billion(ppb). These results suggest the potential of In2O3 ZZNCs as a breath analyzer for the diagnosis of diabetes.

카메라 트래핑 기법과 YOLO-X 알고리즘 기반의 도시 야생동물 탐지 및 분석방법론 개발 (Development of Urban Wildlife Detection and Analysis Methodology Based on Camera Trapping Technique and YOLO-X Algorithm)

  • 김경태;이현정;전승욱;송원경;김휘문
    • 한국환경복원기술학회지
    • /
    • 제26권4호
    • /
    • pp.17-34
    • /
    • 2023
  • Camera trapping has been used as a non-invasive survey method that minimizes anthropogenic disturbance to ecosystems. Nevertheless, it is labor-intensive and time-consuming, requiring researchers to quantify species and populations. In this study, we aimed to improve the preprocessing of camera trapping data by utilizing an object detection algorithm. Wildlife monitoring using unmanned sensor cameras was conducted in a forested urban forest and a green space on a university campus in Cheonan City, Chungcheongnam-do, Korea. The collected camera trapping data were classified by a researcher to identify the occurrence of species. The data was then used to test the performance of the YOLO-X object detection algorithm for wildlife detection. The camera trapping resulted in 10,500 images of the urban forest and 51,974 images of green spaces on campus. Out of the total 62,474 images, 52,993 images (84.82%) were found to be false positives, while 9,481 images (15.18%) were found to contain wildlife. As a result of wildlife monitoring, 19 species of birds, 5 species of mammals, and 1 species of reptile were observed within the study area. In addition, there were statistically significant differences in the frequency of occurrence of the following species according to the type of urban greenery: Parus varius(t = -3.035, p < 0.01), Parus major(t = 2.112, p < 0.05), Passer montanus(t = 2.112, p < 0.05), Paradoxornis webbianus(t = 2.112, p < 0.05), Turdus hortulorum(t = -4.026, p < 0.001), and Sitta europaea(t = -2.189, p < 0.05). The detection performance of the YOLO-X model for wildlife occurrence was analyzed, and it successfully classified 94.2% of the camera trapping data. In particular, the number of true positive predictions was 7,809 images and the number of false negative predictions was 51,044 images. In this study, the object detection algorithm YOLO-X model was used to detect the presence of wildlife in the camera trapping data. In this study, the YOLO-X model was used with a filter activated to detect 10 specific animal taxa out of the 80 classes trained on the COCO dataset, without any additional training. In future studies, it is necessary to create and apply training data for key occurrence species to make the model suitable for wildlife monitoring.

위치 정보 인코딩 기반 ISP 신경망 성능 개선 (Enhancing A Neural-Network-based ISP Model through Positional Encoding)

  • 김대연;김우혁;조성현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제30권3호
    • /
    • pp.81-86
    • /
    • 2024
  • 영상 신호 프로세서(Image Signal Processor, ISP)는 카메라 센서로부터 획득된 RAW 영상을 사람의 눈에 보기 좋은 sRGB 영상으로 변환한다. RAW 영상은 sRGB 영상에 비해 영상 처리에 도움이 되는 정보를 가지고 있지만 상대적으로 큰 용량으로 인해 주로 sRGB 영상만 저장되고 사용된다. 또한, 실제 카메라의 ISP 과정이 공개되어 있지 않아 그 역과정을 모사하는 것은 매우 어렵다. 이에 sRGB와 RAW 영상의 상호 변환을 위한 카메라 ISP 모델링 연구가 활발히 진행되고 있으며, 최근 기존의 단순한 ISP 신경망 구조를 고도화하고 실제 카메라 ISP의 동작과 유사하게 카메라 파라미터(노출 시간, 감도, 조리개 크기, 초점 거리)를 직접 반영하는 ParamISP[1] 모델이 제안되었다. 하지만 ParamISP[1]를 포함한 기존의 연구는 카메라 ISP를 모델링함에 있어 렌즈로 인해 발생하는 렌즈 쉐이딩(Lens Shading), 광학 수차(Optical Aberration), 렌즈 왜곡(Lens Distortion) 등을 고려하지 않아 복원 성능에 한계가 있다. 본 연구는 ISP 신경망이 렌즈로 인해 발생하는 열화를 보다 잘 다룰 수 있도록 위치 정보 인코딩(Positional Encoding)을 도입한다. 제안하는 위치 정보 인코딩 기법은 영상을 분할하여 패치(Patch) 단위로 학습하는 카메라 ISP 신경망에 적합하며 기존 모델에 비해 영상의 공간적 맥락을 반영할 수 있어 더욱 정교한 영상 복원을 가능하게 한다.

무인항공기 RGB 기준 정사영상을 이용한 특징점 추출 알고리즘 비교 (Comparison of Feature Point Extraction Algorithms Using Unmanned Aerial Vehicle RGB Reference Orthophoto)

  • 이기림;성지훈;정세정;신현길;김도훈;이원희
    • 대한토목학회논문집
    • /
    • 제44권2호
    • /
    • pp.263-270
    • /
    • 2024
  • 무인항공기와 무인항공기 센서가 다양하게 개발됨에 따라 기존의 항공사진 또는 원격탐사보다 좁은 면적에 대한 정보를 빠르게 업데이트할 수 있다. 하지만 무인항공기 사진측량에서 지상기준점의 획득과 입력은 많은 시간이 소요되며, 지상기준점 측량과 입력이 잘못될 경우 기하 왜곡이 발생한다. 본 연구에서는 이러한 지상기준점 획득과 입력의 시간을 줄이기 위해 RGB 기준 정사영상을 제작하고, 다양한 센서의 목적 정사영상에 특징점 알고리즘을 적용하여 비교·평가를 수행하였다. 연구대상지 2곳에 대해 4가지 특징점 추출 알고리즘을 적용했으며, 그 결과 특징점 대비 매칭쌍의 비율은 speeded up robust features(SURF)가 가장 우수하였다. 전체적으로 비교했을 때 accelerated-KAZE(AKAZE) 방법이 가장 많은 특징점과 매칭쌍을 추출했으며, binary robust invariant scalable keypoints(BRISK) 방법이 가장 적은 특징점과 매칭쌍을 추출했다. 본 결과를 통해 센서별 목적 정사영상 기하보정 수행 시 AKAZE 방법이 우수한 것을 확인할 수 있었다.