DOI QR코드

DOI QR Code

Highly ordered In2O3 zig-zag nanocolumns for selective detection of acetone

아세톤의 선택적 감지를 위한 In2O3 zig-zag nanocolumns

  • Jae Han Chung (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Ho-Gyun Kim (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Yun-Haeng Cho (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Junho Hwang (Department of Materials Science and Engineering, Yonsei University) ;
  • See-Hyung Park (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Sungwoo Sohn (Department of Materials Science and Engineering, Yonsei University) ;
  • Su Bin Jung (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Eunsol Lee (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kwangjae Lee (Department of Information Security Engineering, Sangmyung University) ;
  • Young-Seok Shim (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • 정재한 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김호균 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 조윤행 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 황준호 (연세대학교 신소재공학과) ;
  • 박시형 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 손성우 (연세대학교 신소재공학과) ;
  • 정수빈 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 이은솔 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 이광재 (상명대학교 정보보안공학과) ;
  • 심영석 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2024.02.06
  • Accepted : 2024.02.21
  • Published : 2024.02.29

Abstract

We fabricated In2O3 zig-zag nanocolumns(ZZNCs) by oblique angle deposition method based on e-beam evaporator for highly sensitive and selective CH3COCH3 sensor. Our results indicate that as the ZZNCs layer stacks, the gas response also increases. In comparison to thin films, ZZNCs at 5 layer show a 117-fold enhancement in gas response and a rapid response time (~2 s). When measured with various gases, it showed a high selectivity towards acetone. Under conditions of 80% R.H., exposure to CH3COCH3 gas theoretically indicated a detection limit of 1.2 part-per-billion(ppb). These results suggest the potential of In2O3 ZZNCs as a breath analyzer for the diagnosis of diabetes.

Keywords

Acknowledgement

본 논문은 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-004) 본 논문은 한국기술교육대학교 산학협력단 공용장비센터의 지원으로 연구되었습니다.

References

  1. J. King, H. Koc, K. Unterkofler, P. Mochalski, A. Kupferthaler, G. Teschl, H. Teschl, H. Hinterhuber, A. Amann, Physiological modeling of isoprene dynamics in exhaled breath, Journal of Theoretical Biology, 267 (2010) 626-637.
  2. T. Chen, T. Liu, T. Li, H. Zhao, Q. Chen, Exhaled breath analysis in disease detection, Clinica Chimica Acta, 515 (2021) 61-72. https://doi.org/10.1016/j.cca.2020.12.036
  3. E. Gashimova, A. Temerdashev, V. Porkhanov, I. Polyakov, D. Perunov, A. Azaryan, E. Dmitrieva, Investigation of different approaches for exhaled breath and tumor tissue analyses to identify lung cancer biomarkers, Heliyon, 6 (2020) e04224.
  4. M. Phillips, R.N.Cataneo, C. Saunders, P. Hope, P. Schmitt, J. Wai, Volatile biomarkers in the breath of women with breast cancer, Journal of Breath Research, 4 (2010) 026003.
  5. M. Kaloumenou, E. Skotadis, N. Lagopati, E. Efstathopoulos, D. Tsoukalas, Breath analysis: a promising tool for disease diagnosis-the role of sensors, Sensors, 22 (2022) 1238.
  6. L. Pauling, A. B. Robinson, R. Teranishi, P. Cary, Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography, Proceedings of the National Academy of Sciences, 68 (1971) 2374-2376. https://doi.org/10.1073/pnas.68.10.2374
  7. T. Itoh, T. Miwa, A. Tsuruta, T. Akamatsu, N. Izu, W. Shin, J. Park, T. Hida, T. Eda, Y. Setoguchi, Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns, Sensors, 16 (2016) 1891.
  8. H. Amal, L. Ding, B. B. Liu, U. Tisch, Z. Q. Xu, D. Y. Shi, Y. Zhao, J. Chen, R. X. Sun, H. Liu, S. L. Ye, Z. Y. Tang, H. Haick, The scent fingerprint of hepatocarcinoma: invitro metastasis prediction with volatile organic compounds (VOCs), International Journal of Nanomedicine, (2012) 4135-4146.
  9. M. Phillips, R. N. Cataneo, B. A. Ditkoff, P. Fisher, J. Greenberg, R. Gunawardena, C. S. Kwon, F. R. Oskoui, C. Wong, Volatile markers of breast cancer in the breath, The Breast Journal, 9 (2003) 184-191. https://doi.org/10.1046/j.1524-4741.2003.09309.x
  10. O. H. Saffar, Z. Boger, S. Libson, D. Lieberman, R. Gonen, Y. Zeiri, Early non-invasive detection of breast cancer using exhaled breath and urine analysis, Computers in Biology and Medicine, 96 (2018) 227-232. https://doi.org/10.1016/j.compbiomed.2018.04.002
  11. S. J. Choi, F. Fuchs, R. Demadrille, B. Grevin, B. H. Jang, S. J. Lee, J. H. Lee, H. L. Tuller, I. D. Kim, Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphenebased electronic sensitizers for diagnosis of diseasesACS Applied Materials & Interfaces, 6 (2014) 9061-9070. https://doi.org/10.1021/am501394r
  12. W. Chen, S. Laiho, O. Vaittinen, L. Halonen, F. Ortiz, C. Forsblom, P. H. Groop, M. Letho, M. Metsala, Biochemical pathways of breath ammonia (NH3) generation in patients with end-stage renal disease undergoing hemodialysis, Journal of Breath Research, 10 (2016) 036011.
  13. D. H. Kim, T. H. Kim, W. Sohn, J. M. Suh, Y. S. Shim, K. C. Kwon, K. Hong, S. Choi, H. G. Byun, J. H. Lee, H. W. Jang, Au decoration of vertical hematite nanotube arrays for further selective detection of acetone in exhaled breath, Sensors and Actuators B: Chemical, 274 (2018) 587-594. https://doi.org/10.1016/j.snb.2018.07.159
  14. D. J. Magliano, E. J. Boyko, IDF diabetes atlas (2022).
  15. Y. Obeidat, The most common methods for breath acetone concentration detection: a review, IEEE Sensors Journal 21 (2021) 14540-14558. https://doi.org/10.1109/JSEN.2021.3074610
  16. M. Phillips, Method for the collection and assay of volatile organic compounds in breath, Analytical Biochemistry, 247 (1997) 272-278. https://doi.org/10.1006/abio.1997.2069
  17. G. de Graaf, R. Wolffenbuttel, Surface micromachined thermal conductivity detectors for gas sensing, IEEE Instrumentation and Measurement Technology Conference, (2012) 1861-1864.
  18. R. A. Cooney, Gas detection-the first 50 years, National Safety News, 118 (1978) 53-56. https://doi.org/10.1021/cen-v056n050.p053
  19. T. Hubert, L. B. Brett, G. Black, U. Banach, Hydrogen sensors-a review, Sensors and Actuators B: Chemical, 157 (2011) 329-352. https://doi.org/10.1016/j.snb.2011.04.070
  20. S. R. Morrison, Semiconductor gas sensors, Sensors and Actuators, 2 (1981) 329-341. https://doi.org/10.1016/0250-6874(81)80054-6
  21. S. J. Kim, S. J. Choi, J. S. Jang, H. J. Cho, I. D. Kim, Innovative nanosensor for disease diagnosis. Accounts of Chemical Research, 50 (2017) 1587-1596. https://doi.org/10.1021/acs.accounts.7b00047
  22. J. Chen, L. Xu, W. Li, X. Gou, α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Advanced Materials, 17 (2005) 582-586. https://doi.org/10.1002/adma.200401101
  23. W. Shi, S. Song, H. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures, Chemical Society Reviews, 42 (2013) 5714-5743.
  24. B. Wen, Y. Huang, J. J. Boland, Controllable growth of ZnO nanostructures by a simple solvothermal process, The Journal of Physical Chemistry C, 112 (2008) 106-111. https://doi.org/10.1021/jp076789i
  25. G. Tabacchi, E. Fois, D. Barreca, A. Gasparotto, CVD precursors for transition metal oxide nanostructures: molecular properties, surface behavior and temperature effects, Physica Status Solidi (A) 211 (2014) 251-259. https://doi.org/10.1002/pssa.201330085
  26. V. A. Kotenev, D. N. Tyurin, A. Y. Tsivadze, M. A. Petrunin, L. B. Maksaeva, T. P. Puryaeva, Formation of metal (Iron)-oxide nanostructures and nanocomposites by reactive sputtering and lowtemperature reoxidation, Protection of Metals and Physical Chemistry of Surfaces, 44 (2008) 589-592.
  27. W. F. Lau, F. Bai, Z. Huang, Ballistic glancing angle deposition of inclined Ag nanorods limited by adatom diffusion, Nanotechnology, 24 (2013) 465707.
  28. Y. G. Song, J. Y. Park, J. M. Suh, Y. S. Shim, S. Y. Yi, H. W. Jang, S. Kim, J. M. Yuk, B. K. Ju, C. Y. Kang, Heterojunction based on Rh-decorated WO3 nanorods for morphological change and gas sensor application using the transition effect, Chem. Mater, 31(1),(2018) 207-215. https://doi.org/10.1021/acs.chemmater.8b04181
  29. Huang, Z., & Bai, F. . Wafer-scale, three-dimensional helical porous thin films deposited at a glancing angle, Nanoscale, 6 (2014) 9401-9409. https://doi.org/10.1039/C4NR00249K
  30. B. Sapam, C. Ngangbam, S. Loitongbam, B. Sougaijam, Recent advancement of GLAD technique for growth of nanostructures and its applications, In 2021 International Conference on Intelligent Technologies (2021) 1-6.
  31. M. M. Hawkeye, M. J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25 (2007) 1317-1335. https://doi.org/10.1116/1.2764082
  32. S. Lee, J. H. Chung, Y. H. Cho, D. Cho, Y. S. Shim, Research trends in onedimensional nanostructures based gas sensors fabricated by glancing angle deposition, Ceramist, 26 (2023) 290-302.
  33. J. Lee, Y. Jung, S. H. Sung, G. Lee, J. Kim, J. Seong, Y. S. Shim, S. C. Jun, S. Jeon, High-performance gas sensor array for indoor air quality monitoring: the role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors, Journal of Materials Chemistry A, 9 (2021) 1159-1167. https://doi.org/10.1039/D0TA08743B
  34. N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors, Catalysis Surveys from Asia, 7 (2003) 63-75. https://doi.org/10.1023/A:1023436725457
  35. N. Nasiri, C.Clarke, Nanostructured chemiresistive gas sensors for medical applications, Sensors, 19 (2019) 462.
  36. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, 121 (2007) 18-35. https://doi.org/10.1016/j.snb.2006.09.047
  37. Y. G. Song, Y. S. Shim, S. Kim, S. D. Han, H. G. Moon, M. S. Noh, K. Lee, H. R. Lee, J. S. Kim, B. K. Ju, C. Y. Kang, Downsizing gas sensors based on semiconducting metal oxide: effects of electrodes on gas sensing properties, Sensors and Actuators B: Chemical, 248 (2017) 949-956.  https://doi.org/10.1016/j.snb.2017.02.035