Acknowledgement
본 논문은 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-004) 본 논문은 한국기술교육대학교 산학협력단 공용장비센터의 지원으로 연구되었습니다.
References
- J. King, H. Koc, K. Unterkofler, P. Mochalski, A. Kupferthaler, G. Teschl, H. Teschl, H. Hinterhuber, A. Amann, Physiological modeling of isoprene dynamics in exhaled breath, Journal of Theoretical Biology, 267 (2010) 626-637.
- T. Chen, T. Liu, T. Li, H. Zhao, Q. Chen, Exhaled breath analysis in disease detection, Clinica Chimica Acta, 515 (2021) 61-72. https://doi.org/10.1016/j.cca.2020.12.036
- E. Gashimova, A. Temerdashev, V. Porkhanov, I. Polyakov, D. Perunov, A. Azaryan, E. Dmitrieva, Investigation of different approaches for exhaled breath and tumor tissue analyses to identify lung cancer biomarkers, Heliyon, 6 (2020) e04224.
- M. Phillips, R.N.Cataneo, C. Saunders, P. Hope, P. Schmitt, J. Wai, Volatile biomarkers in the breath of women with breast cancer, Journal of Breath Research, 4 (2010) 026003.
- M. Kaloumenou, E. Skotadis, N. Lagopati, E. Efstathopoulos, D. Tsoukalas, Breath analysis: a promising tool for disease diagnosis-the role of sensors, Sensors, 22 (2022) 1238.
- L. Pauling, A. B. Robinson, R. Teranishi, P. Cary, Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography, Proceedings of the National Academy of Sciences, 68 (1971) 2374-2376. https://doi.org/10.1073/pnas.68.10.2374
- T. Itoh, T. Miwa, A. Tsuruta, T. Akamatsu, N. Izu, W. Shin, J. Park, T. Hida, T. Eda, Y. Setoguchi, Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns, Sensors, 16 (2016) 1891.
- H. Amal, L. Ding, B. B. Liu, U. Tisch, Z. Q. Xu, D. Y. Shi, Y. Zhao, J. Chen, R. X. Sun, H. Liu, S. L. Ye, Z. Y. Tang, H. Haick, The scent fingerprint of hepatocarcinoma: invitro metastasis prediction with volatile organic compounds (VOCs), International Journal of Nanomedicine, (2012) 4135-4146.
- M. Phillips, R. N. Cataneo, B. A. Ditkoff, P. Fisher, J. Greenberg, R. Gunawardena, C. S. Kwon, F. R. Oskoui, C. Wong, Volatile markers of breast cancer in the breath, The Breast Journal, 9 (2003) 184-191. https://doi.org/10.1046/j.1524-4741.2003.09309.x
- O. H. Saffar, Z. Boger, S. Libson, D. Lieberman, R. Gonen, Y. Zeiri, Early non-invasive detection of breast cancer using exhaled breath and urine analysis, Computers in Biology and Medicine, 96 (2018) 227-232. https://doi.org/10.1016/j.compbiomed.2018.04.002
- S. J. Choi, F. Fuchs, R. Demadrille, B. Grevin, B. H. Jang, S. J. Lee, J. H. Lee, H. L. Tuller, I. D. Kim, Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphenebased electronic sensitizers for diagnosis of diseasesACS Applied Materials & Interfaces, 6 (2014) 9061-9070. https://doi.org/10.1021/am501394r
- W. Chen, S. Laiho, O. Vaittinen, L. Halonen, F. Ortiz, C. Forsblom, P. H. Groop, M. Letho, M. Metsala, Biochemical pathways of breath ammonia (NH3) generation in patients with end-stage renal disease undergoing hemodialysis, Journal of Breath Research, 10 (2016) 036011.
- D. H. Kim, T. H. Kim, W. Sohn, J. M. Suh, Y. S. Shim, K. C. Kwon, K. Hong, S. Choi, H. G. Byun, J. H. Lee, H. W. Jang, Au decoration of vertical hematite nanotube arrays for further selective detection of acetone in exhaled breath, Sensors and Actuators B: Chemical, 274 (2018) 587-594. https://doi.org/10.1016/j.snb.2018.07.159
- D. J. Magliano, E. J. Boyko, IDF diabetes atlas (2022).
- Y. Obeidat, The most common methods for breath acetone concentration detection: a review, IEEE Sensors Journal 21 (2021) 14540-14558. https://doi.org/10.1109/JSEN.2021.3074610
- M. Phillips, Method for the collection and assay of volatile organic compounds in breath, Analytical Biochemistry, 247 (1997) 272-278. https://doi.org/10.1006/abio.1997.2069
- G. de Graaf, R. Wolffenbuttel, Surface micromachined thermal conductivity detectors for gas sensing, IEEE Instrumentation and Measurement Technology Conference, (2012) 1861-1864.
- R. A. Cooney, Gas detection-the first 50 years, National Safety News, 118 (1978) 53-56. https://doi.org/10.1021/cen-v056n050.p053
- T. Hubert, L. B. Brett, G. Black, U. Banach, Hydrogen sensors-a review, Sensors and Actuators B: Chemical, 157 (2011) 329-352. https://doi.org/10.1016/j.snb.2011.04.070
- S. R. Morrison, Semiconductor gas sensors, Sensors and Actuators, 2 (1981) 329-341. https://doi.org/10.1016/0250-6874(81)80054-6
- S. J. Kim, S. J. Choi, J. S. Jang, H. J. Cho, I. D. Kim, Innovative nanosensor for disease diagnosis. Accounts of Chemical Research, 50 (2017) 1587-1596. https://doi.org/10.1021/acs.accounts.7b00047
- J. Chen, L. Xu, W. Li, X. Gou, α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Advanced Materials, 17 (2005) 582-586. https://doi.org/10.1002/adma.200401101
- W. Shi, S. Song, H. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures, Chemical Society Reviews, 42 (2013) 5714-5743.
- B. Wen, Y. Huang, J. J. Boland, Controllable growth of ZnO nanostructures by a simple solvothermal process, The Journal of Physical Chemistry C, 112 (2008) 106-111. https://doi.org/10.1021/jp076789i
- G. Tabacchi, E. Fois, D. Barreca, A. Gasparotto, CVD precursors for transition metal oxide nanostructures: molecular properties, surface behavior and temperature effects, Physica Status Solidi (A) 211 (2014) 251-259. https://doi.org/10.1002/pssa.201330085
- V. A. Kotenev, D. N. Tyurin, A. Y. Tsivadze, M. A. Petrunin, L. B. Maksaeva, T. P. Puryaeva, Formation of metal (Iron)-oxide nanostructures and nanocomposites by reactive sputtering and lowtemperature reoxidation, Protection of Metals and Physical Chemistry of Surfaces, 44 (2008) 589-592.
- W. F. Lau, F. Bai, Z. Huang, Ballistic glancing angle deposition of inclined Ag nanorods limited by adatom diffusion, Nanotechnology, 24 (2013) 465707.
- Y. G. Song, J. Y. Park, J. M. Suh, Y. S. Shim, S. Y. Yi, H. W. Jang, S. Kim, J. M. Yuk, B. K. Ju, C. Y. Kang, Heterojunction based on Rh-decorated WO3 nanorods for morphological change and gas sensor application using the transition effect, Chem. Mater, 31(1),(2018) 207-215. https://doi.org/10.1021/acs.chemmater.8b04181
- Huang, Z., & Bai, F. . Wafer-scale, three-dimensional helical porous thin films deposited at a glancing angle, Nanoscale, 6 (2014) 9401-9409. https://doi.org/10.1039/C4NR00249K
- B. Sapam, C. Ngangbam, S. Loitongbam, B. Sougaijam, Recent advancement of GLAD technique for growth of nanostructures and its applications, In 2021 International Conference on Intelligent Technologies (2021) 1-6.
- M. M. Hawkeye, M. J. Brett, Glancing angle deposition: fabrication, properties, and applications of micro-and nanostructured thin films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25 (2007) 1317-1335. https://doi.org/10.1116/1.2764082
- S. Lee, J. H. Chung, Y. H. Cho, D. Cho, Y. S. Shim, Research trends in onedimensional nanostructures based gas sensors fabricated by glancing angle deposition, Ceramist, 26 (2023) 290-302.
- J. Lee, Y. Jung, S. H. Sung, G. Lee, J. Kim, J. Seong, Y. S. Shim, S. C. Jun, S. Jeon, High-performance gas sensor array for indoor air quality monitoring: the role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors, Journal of Materials Chemistry A, 9 (2021) 1159-1167. https://doi.org/10.1039/D0TA08743B
- N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors, Catalysis Surveys from Asia, 7 (2003) 63-75. https://doi.org/10.1023/A:1023436725457
- N. Nasiri, C.Clarke, Nanostructured chemiresistive gas sensors for medical applications, Sensors, 19 (2019) 462.
- N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, 121 (2007) 18-35. https://doi.org/10.1016/j.snb.2006.09.047
- Y. G. Song, Y. S. Shim, S. Kim, S. D. Han, H. G. Moon, M. S. Noh, K. Lee, H. R. Lee, J. S. Kim, B. K. Ju, C. Y. Kang, Downsizing gas sensors based on semiconducting metal oxide: effects of electrodes on gas sensing properties, Sensors and Actuators B: Chemical, 248 (2017) 949-956. https://doi.org/10.1016/j.snb.2017.02.035