• Title/Summary/Keyword: Sensor waveform

Search Result 139, Processing Time 0.025 seconds

Development of Inter-Turn Short Circuits Sensor for Field Winding of Synchronous Generator

  • Nam J-H;Jeon Y-S;Choe G-H;Lee S-H;Jeong S-Y;Yoo B-Y;Ju Y-H;Lee Y-J;Shin W-S
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.56-59
    • /
    • 2001
  • An effective method of detecting inter-turn short circuits on round rotor windings is described. Shorted-turns can have significant effects on a generator and its performance. A method of detecting inter-turn short circuits on rotor windings is described. The approach used is to measure the rate of change of the air-gap flux density wave when the rotor is at operating speed and excitation is applied to the field winding. The inter-turn short circuits sensor for synchronous generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a inter-turn short circuits test was performed at the West-Inchon combined cycle power plant on gas turbine generator and steam turbine generator. This sensor will be used as a detecting of shorted-turn for field winding of synchronous generator. The purpose of this paper is to describe the design and operation of a sensitive inter-turn short circuits detector. In this paper, development of inter-turn short circuits sensor for field winding of synchronous generator and application in a field.

  • PDF

Development of an Measuring System for Pulse Wave Corresponding to Different Radial Artery Diameters Caused by Indentation (요골동맥 직경 변화에 따른 맥파 측정 시스템 개발)

  • Lee, Jeon;Woo, Young-Jae;Jeon, Young-Ju;Lee, Yu-Jung;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2351-2357
    • /
    • 2008
  • Noninvasive radial artery pulse wave has been widely used not only for the pulse wave analysis(PWA) itself but also for assessment of arterial stiffness with estimated aortic pulse wave from peripheral pulse wave. However, it has been found that the deformation of pulse shape can be caused readily by changing measuring position, indentation pressure, and so on. So, in this study, we have developed a system which can measure radial pulse wave and skin displacement simultaneously while the indentation body goes down to occlude subject's radial artery. This system can be divided into a measuring apparatus part, an indentation control hardware part, a data acquisition part and a control and computation part. And, the measuring apparatus consists of an arm-rest, a step motor, an indentation body, a laser displacement sensor(LK-G30, Keyence Co.) and pulse wave sensor. Under load-free condition and radial artery loaded condition, the evaluation of developed system has been performed. From these results, we can conclude: 1) The developed system can control the indentation body quantitatively and the adopted laser displacement sensor shows linear output characteristic even with skin as a reflector. 2) This system can measure the pulse wave and the displacement of indentation body, that is, skin displacement simultaneously at each specific level of indentation body. 3) This system can provide the number of motor steps used to get down the indentation body, the measured skin displacement, the calculated indentation pressure, the calculated pulse pressure and the pulse waveform as well as the information generated by combining these with each others. 4) This system can reveal the relationship between the morphological changes of pulse wave and the estimated displacement of radial artery wall by indentation. Consequently, the developed system can furnish more abundant information on radial artery than previous diagnosis systems based on tonometric measurement. In further study, we expect to setup the standard measuring process and to concrete the algorithm for the estimation of radial artery's diameter and of displacement of radial artery's wall. Furthermore, with well designed clinical studies, we hope to turn out the usefulness of developed system in the field of cardiovascular system evaluation.

Development of Ultrasonic Sensors for Simultaneous Measurement of Longitudinal and Shear Waves (종-횡파 동시 측정용 초음파 센서의 개발)

  • Kim, Yeon-Bo;Rho, Yong-Rae
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • A study has been made on the fabrication of a dual mode(a longitudinal and shear mode) ultrasonic sensor using a single PZT piezoelectric ceramic element. We investigated the mechanism of the dual mode sensor that generated both of the longitudinal and the shear waves simultaneously with the single PZT element. Through the analysis of analytic wave propagation equations, all the possible crystal cuts have been examined to determine appropriate Euler transformation angles for efficient excitations of the dual modes. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves of equal strength. Experimental examination of the waveform on a delay line(STS303) setup confirms that the ultrasonic sensor can transmit and detect both longitudinal and shear waves simultaneously.

  • PDF

Performance Evaluation of a Fiber-Optic Cerenkov Radiation Sensor System Using a Simulated Spent Fuel Assembly (사용후핵연료 집합체 모사장치를 이용한 광섬유 체렌코프 방사선 센서 시스템의 성능평가)

  • Shin, Sang Hun;Yoo, Wook Jae;Jang, Kyoung Won;Cho, Seunghyun;Park, Byung Gi;Lee, Bongsoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.245-250
    • /
    • 2014
  • When the charged particle travels in transparent medium with a velocity greater than that of light in the same medium, the electromagnetic field close to the particle polarizes the medium along its path, and then the electrons in the atoms follow the waveform of the pulse which is called as Cerenkov light or radiation. This type of radiation can be easily observed in a spent fuel storage pit. In optical fibers, the Cerenkov light also can be generated due to their dielectric components. Accordingly, the radiation-induced light signals can be obtained using optical fibers without any scintillating material. In this study, to measure the intensities of Cerenkov radiation induced by gamma-rays, we have fabricated the fiber-optic Cerenkov radiation sensor system using silica optical fibers, plastic optical fibers, multi-anode photomultiplier tubes, simulated spent fuel assembly and a scanning system. To characterize the Cerenkov radiation generated in optical fibers, the intensities of Cerenkov radiation generated in the silica and plastic optical fibers were measured. Also, we measured the longitudinal distribution of gamma rays emitted from the Ir-192 isotope by using the fiber-optic Cerenkov radiation sensor system and simulated spent fuel assembly.

Analysis of Impact Acoustic Property of Apple Using Piezo-Polymer Film Sensor (고분자 압전 박막 센서를 이용한 사과의 충격 음파 특성 분석)

  • Kim, Man-Soo;Lee, Sang-Dae;Park, Jeong-Hak;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • In this study, the PVDF (polyvinylidene fluoride) piero-film sensor was applied to measure the internal quality of apple. The developed sensor detected the response signal through apple after mechanical impact on the surface of apple. The acoustical parameters at time domain such as rise time (RT), ring down count (RC), energy (EN), event duration (ED) and peak amplitude (PA) and acoustical parameter at frequency domain such as spectral density (SE) were analyzed. The size of waveform decreased as storage time of apple increased. The frequency at maximum magnitude was shifted to lower frequency band according to the storage time. The acoustical parameters showed strong relationship with storage time. The multiple linear regression equation was developed to estimate storage time of apple using the acoustical parameters at time domain and its coefficient of determination was 0.97. The internal quality of apple according to storage time is predictable using developed PVDF sensor and acoustical parameters defined in this study.

Implementation of a Fluxgate Sensor using Ferrite Ring Core (페라이트 링 코어를 사용한 fluxgate 센서의 구현)

  • Park, Yong-Woo;Kim, Ki-Uk;Kim, Nam-Ho;Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.427-433
    • /
    • 1999
  • In this paper, we have presented an one-axis fluxgate magnetic sensor with ferrite core, excitation, and pick-up coil. This magnetometer is consist of a sensing element, driving circuits for excitation coil and signal processing for detecting second harmonic frequency component which is proportional to the DC magnetic to be measured. The sensor core is excited by a square waveform of voltage through 82 turns of the excitation coil. The second harmonic output of pick-up coil(150 turns) is measured by a FFT spectrum analyzer. This result is compared to output of PSD(phase sensitive detector) unit for detecting a second harmonic component. The measured sensitivity is about 50 V/T at driving frequency of 2 kHz. The nonlinearity of fluxgate magnetic sensor is calculated about 2.0%.

  • PDF

3-dimensional Coordinate Measurement by Pulse Magnetic Field Method (자기적 방법을 이용한 3차원 좌표 측정)

  • Im, Y.B.;Cho, Y.;Herr, H.B.;Son, D.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.206-211
    • /
    • 2002
  • We have constructed a new kind of magnetic motion capture sensor based on the pulse magnetic field method. 3-orthogonal magnetic pulse fields were generated in turns only one period of sinusoidal waveform using 3-orthogonal magnetic dipole coils, ring counter and analog multiplier. These pulse magnetic fields were measured with 3-orthogonal search coils, of which induced voltages by the x-, y-, and l-dipole sources using S/H amplifier at the time position of maximum induced voltage. Using the developed motion capture sensor, we can measure position of sensor with uncertainty of ${\pm}$0.5% in the measuring range from ${\pm}$0.5 m to ${\pm}$1.5 m.

Compensation of the Error Rate for the Non-invasive Sphygmomanometer System Using a Tactile Sensor

  • Jeong, In-Cheol;Choi, Yoo-Nah;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.136-141
    • /
    • 2007
  • The Purpose Of This Paper Is To Use A Tactile Sensor To Compensate The Error Rate. Most Automated Sphygmomanometers Use The Oscillometric Method And Characteristic Ratio To Estimate Systolic And Diastolic Blood Pressure. However, Based On The Fact That Maximum Amplitude Of The Oscillometric Waveform And Characteristic Ratio Are Affected By Compliance Of The Aorta And Large Arteries, A Method To Measure The Artery Stiffness By Using A Tactile Sensor Was Chosen In Order To Integrate It With The Sphygmomanometer In The Future Instead Of Using Photoplethysmography. Since Tactile Sensors Have Very Weak Movements, Efforts Were Made To Maintain The Subject's Arm In A Fixed Position, And A 40hz Low Pass Filter Was Used To Eliminate Noise From The Power Source As Well As High Frequency Noise. An Analyzing Program Was Made To Get Time Delay Between The First And Second Peak Of The Averaged Digital Volume Pulse(${\Delta}t_{dvp}$), And The Subject's Height Was Divided By ${\Delta}t_{dvp}$ To Calculate The Stiffness Index Of The Arteries($Si_{dvp}$). Regression Equations Of Systolic And Diastolic Pressure Using $Si_{dvp}$ And Mean Arterial Pressure(Map) Were Computed From The Test Group (60 Subjects) Among A Total Of 121 Subjects(Age: $44.9{\pm}16.5$, Male: Female=40:81) And Were Tested In 61 Subjects To Compensate The Error Rate. Error Rates Considering All Subjects Were Systolic $4.62{\pm}9.39mmhg$, And Diastolic $14.40{\pm}9.62mmhg$, And Those In The Test Set Were $3.48{\pm}9.32mmhg,\;And\;14.34{\pm}9.67mmhg$ Each. Consequently, Error Rates Were Compensated Especially In Diastolic Pressure Using $Si_{dvp}$, Various Slopes From Digital Volume Pulse And Map To Systolic-$1.91{\pm}7.57mmhg$ And Diastolic $0.05{\pm}7.49mmhg$.

Radial Pulse Wave Detection system for the Korean Medicine (한방용(韓方用) 맥파 검출시스템)

  • Lee, H.J.;Kim, J.W.;Kim, H.O.;Park, Y.B.;Huh, W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.11
    • /
    • pp.66-69
    • /
    • 1991
  • This paper describes a design of transducer for non-invasively detecting pressure radial pulse wave in aterial system and a recording system that for the studing the aterial pulse diagnosis of korean traditional medicine. The mechanism of transducer is composed of sensing mechanism, pressure sensor, conditioning amplifier. The variation of radial pulse pressure in the sensing mechanism is converted to the electric signal by piezo-resistive pressure sensor and it converted to the digital signal after preprocessing via A/D converter. The converted signals inputed to the computer as data files and then it display to the monitor for waveform watching and this datas can be used as the aterial pulse diagnosis data. This system effectively detect non-differential radial pulse wave and we conside that if analizing the recorded radial pulse wave, compared each other, it can be helpful in quantify radial pulse wave diagonosis of the Korean traditional medicine.

  • PDF

Development of an Interventricular Pressure Measurement System or the Korean Total Artificial Heart (한국형 인공심장내의 심실간 압력 측정시스템의 개발)

  • Choi, S.W.;Ahn, J.M.;Jo, Y.H.;Om, K.S.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.126-130
    • /
    • 1997
  • In the development of the totally implantable artificial heart (TAH), the information of the preload condition is important to ind appropriate condition or the automatic control of the heart. Our TAH configuration consists of two artificial ventricles, and brushless DC motor within actuator. The pressure between ventricles could indicate the preload condition during the TAH operation. If we can measure accurately inspite of the noise induced from TAH and environmental condition. We suggested integrating a feedback loop to remove an unexpected DC drift. NPI 19-series Nova sensor was used which could measure pressure in gas and liquid. This method and sensor enabled us to develop the pressure transducer compact so (that) the systems can be implanted with TAH into patient. This system has been verified in vitro and in vivo test. This results showed that the output waveform of this system was stable irrespective of animal condition.

  • PDF