• Title/Summary/Keyword: Sensor technology

Search Result 8,664, Processing Time 0.042 seconds

Fabrication of Silicon Window for Low-price Thermal Imaging System (저가형 열영상 시스템을 위한 실리콘 윈도우 제작)

  • Sung, Byung Mok;Jung, Dong Geon;Bang, Soon Jae;Baek, Sun Min;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • An infrared (IR) bolometer measures the change of resistance by absorbing incident IR radiation and generates a signal as a function of the radiation intensity. Since a bolometer requires temperature stabilization and light filtering except for the infrared rays, it is essential for the device to be packaged meeting conditions that above mentioned. Minimization of heat loss is needed in order to stabilize temperature of bolometer. Heat loss by conduction or convection requires a medium, so the heat loss will be minimized if the medium is a vacuum. Therefore, vacuum packaging for bolometer is necessary. Another important element in bolometer packaging is germanium (Ge) window, which transmits IR radiation to heat the bolometer. To ensure a complete transmittance of IR light, anti-reflection (AR) coatings are deposited on both sides of the window. Although the transmittance of Ge window is high for IR rays, it is difficult to use frequently in low-price IR bolometer because of its high price. In this paper, we fabricated IR window by utilizing silicon (Si) substrate instead of Ge in order to reduce the cost of bolometer packaging. To enhance the IR transmittance through Si substrate, it is textured using Reactive Ion Etching (RIE). The texturing process of Si substrate is performed along with the change of experimental conditions such as gas ratio, pressure, etching time and RF power.

UV Responsive Characteristics of n-Channel Schottky Barrier MOSFET with ITO as Source/Drain Contacts

  • Kim, Tae-Hyeon;Lee, Chang-Ju;Kim, Dong-Seok;Sung, Sang-Yun;Heo, Young-Woo;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.156-161
    • /
    • 2011
  • We fabricated a schottky barrier metal oxide semiconductor field effect transistor(SB-MOSFET) by applying indium-tin-oxide(ITO) to the source/drain on a highly resistive GaN layer grown on a silicon substrate. The MOSFET, with 10 ${\mu}M$ gate length and 100 ${\mu}M$ gate width, exhibits a threshold gate voltage of 2.7 V, and has a sub-threshold slope of 240 mV/dec taken from the $I_{DS}-V_{GS}$ characteristics at a low drain voltage of 0.05 V. The maximum drain current is 18 mA/mm and the maximum transconductance is 6 mS/mm at $V_{DS}$=3 V. We observed that the spectral photo-response characterization exhibits that the cutoff wavelength was 365 nm, and the UV/visible rejection ratio was about 130 at $V_{DS}$ = 5 V. The MOSFET-type UV detector using ITO, has a high UV photo-responsivity and so is highly applicable to the UV image sensors.

Relationship between electrical stimulus strength and contraction force from the inside of small intestine (전기 자극 강도에 따른 소장 내부에서의 수축력 관계)

  • Woo, S.H.;Kim, T.W.;Lee, J.H.;Park, H.J.;Moon, Y.K.;Won, C.H.;Lee, S.H.;Park, I.Y.;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Recently, capsule endoscope was developed to observe small intestine in human body. However, the capsule does not have any locomotive ability, which reduces the benefit of the capsule endoscope. Many researches have done to give locomotion to the capsule, still it consumes too much power to generate the motion by small battery. One of the moving method is electrical stimulus that consumes less power than many methods. The electrical stimulus method causes contraction in the small intestine, and it moves the capsule. Some of papers showed it is possible to guide the capsule by electrical stimulus, however the relationship between electrical stimulus at the mucous and contraction force in the small intestine is not reported, yet. In this paper, the mucous in the small intestine was stimulated, and measured the contraction force in the small intestine is shown. The result shows, the relationship between electrical stimulus parameters (voltage, duration) and contraction force. Also, equation between electrical stimulus parameters and contraction force is roughly induced.

Development of Microfluidic Chip for Enrichment and DNA Extraction of Bacteria Using Concanavalin A Coated Magnetic Particles (Concanavalin A가 코팅 된 자성 입자를 이용한 미생물 농축 및 유전자 추출 칩 개발)

  • Kwon, Kirok;Gwak, Hogyeong;Hyun, Kyung-A;Jung, Hyo-Il
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.237-241
    • /
    • 2018
  • The real-time enrichment and detection of pathogens are serious issues and rapidly evolving field of research because of the ability of these pathogens to cause infectious diseases. In general, bacterial detection is accomplished by conventional colony counting or by polymerase chain reaction (PCR) after DNA extraction. As colony counting requires considerable time to cultivate, PCR is an attractive method for rapid detection. A small number of pathogens can cause diseases. Hence, a pretreatment process, such as enrichment is essential for detecting bacteria in an actual environment. Thus, in this study, we developed a microfluidic chip capable of performing rapid enrichment of bacteria and the extraction of their genes. A lectin, i.e., Concanavalin A (ConA), which shows binding affinity to the surface of most bacteria, was coated on the surface of magnetic particles to nonspecifically capture bacteria. It was subsequently concentrated through magnetic forces in a microfluidic channel. To lyse the captured bacteria, magnetic particles were irradiated by a wavelength of 532nm. The photo-thermal effect on the particles was sufficient for extracting DNA, which was consequently utilized for the identification of bacteria. Our device will help monitor the existence of bacteria in various environmental situations such as water, air, and soil.

Development of a Piezoelectric Micro-machined Ultrasonic Transducer for Photoacoustic Imaging that Accounts for the Added Mass Effect of the Acoustic Medium (음향 매질의 추가질량 효과를 고려한 광음향 영상용 초소형 압전 기반 초음파 트랜스듀서의 개발)

  • Ahn, Hongmin;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • Typically, photoacoustic images are obtained in water or gelatin because the impedance of these mediums is similar to that of the human body. However, these acoustic mediums can have an additional mass effect that changes the resonance frequency of the transducer. The acoustic radiation impedance in air is negligible because it is very small compared to that of the transducer. However, the high acoustic impedance of mediums such as the human body and water is quite large compared to that of air, making it difficult to ignore. Specifically, in a case where the equivalent mass is very small, such as with a micro-machined ultrasound transducer, the additional mass effects of the acoustic medium should be considered for an accurate resonance frequency design. In this study, a piezoelectric micro-machined ultrasonic transducer (pMUT) was designed to have a resonance frequency of 10 MHz in the acoustic medium of water, which has similar impedance as the human body. At that time, the resonance frequency of the pMUT in air was calculated at 15.2 MHz. When measuring the center displacement of the manufactured pMUT using a laser vibrometer, the resonance frequencies were measured as 14.3-15.1 MHz, which is consistent with the finite element method (FEM) simulation results. Finally, photoacoustic images of human hair samples were successfully obtained using the fabricated pMUT.

Improvement of Surface-enhanced Raman Spectroscopy Response Characteristics of Nanoporous Ag Metal Thin Film with Surface Texture Structures (표면 요철구조를 적용한 나노 다공성 Ag 금속박막의 SERS 응답 특성 개선)

  • Kim, Hyeong Ju;Kim, Bonghwan;Lee, Dongin;Lee, Bong-Hee;Cho, Chanseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.255-260
    • /
    • 2020
  • In this study, we developed a method of improving the surface-enhanced Raman spectroscopy (SERS) response characteristics by depositing a nanoporous Ag metal thin film through cluster source sputtering after forming a pyramidal texture structure on the Si substrate surface. A reactive ion etching (RIE) system with a metal mesh inside the system was used to form a pyramidal texture structure on the Si surface without following a complicated photolithography process, unlike in case of the conventional RIE system. The size of the texture structure increased with the RIE process time. However, after a process time of 60 min, the size of the structure did not increase but tended to saturate. When the RF power increased from 200 to 250 W, the size of the pyramidal texture structure increased from 0.45 to 0.8 ㎛. The SERS response characteristics were measured by depositing approximately 1.5 ㎛ of nanoporous Ag metal thin film through cluster sputtering on the formed texture structure by varying the RIE process conditions. The Raman signal strength of the nanoporous Ag metal thin film deposited on the Si substrate with the texture structure was higher than that deposited on the general silicon substrate by up to 19%. The Raman response characteristics were influenced by the pyramid size and the number of pyramids per unit area but appeared to be influenced more by the number of pyramids per unit area. Therefore, further studies are required in this regard.

Improvement of the carrier transport property and interfacial behavior in InGaAs quantum well Metal-Oxide-Semiconductor Field-Effect-Transistors with sulfur passivation (황화 암모늄을 이용한 Al2O3/HfO2 다층 게이트 절연막 트랜지스터 전기적 및 계면적 특성 향상 연구)

  • Kim, Jun-Gyu;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.266-269
    • /
    • 2020
  • In this study, we investigated the effect of a sulfur passivation (S-passivation) process step on the electrical properties of surface-channel In0.7Ga0.3As quantum-well (QW) metal-oxide-semiconductor field-effect transistors (MOSFETs) with S/D regrowth contacts. We fabricated long-channel In0.7Ga0.3As QW MOSFETs with and without (NH4)2S treatment and then deposited 1/4 nm of Al2O3/HfO2 through atomic layer deposition. The devices with S-passivation exhibited lower values of subthreshold swing (74 mV/decade) and drain-induced barrier lowering (19 mV/V) than the devices without S-passivation. A conductance method was applied, and a low value of interface trap density Dit (2.83×1012 cm-2eV-1) was obtained for the devices with S-passivation. Based on these results, interface traps between InGaAs and high-κ are other defect sources that need to be considered in future studies to improve III-V microsensor sensing platforms.

MnCo2S4/CoS2 Electrode for Ultrahigh Areal Capacitance

  • Pujari, Rahul B.;Lokhande, C.D.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.215-219
    • /
    • 2020
  • MnCo2S4/CoS2 electrode with highly accessible electroactive sites is prepared using the hydrothermal method. The electrode exhibits an areal capacitance of 0.75 Fcm-2 at 6 mAcm-2 in 1 M KOH. The capacitance is further increased to 2.06 Fcm-2 by adding K3Fe(CN)6 and K4Fe(CN)6 (a redox couple) to KOH. This increment is associated with the redox-active properties of cobalt and manganese transition metals, as well as the ion pair of [Fe(CN)6]-3/[Fe(CN)6]-4. The capacitance retention of the MnCo2S4/CoS2 electrode is 87.5% for successive 4000 charge-discharge cycles at 10 mAcm-2 in a composite electrolyte system of KOH and ferri/ferrocyanide. The capacitance enhancement is supported by the lowest equivalent series resistance (0.62 Ωcm-2) of MnCo2S4/CoS2 in the presence of redox additive couple compared with the bare KOH electrolyte.

The Study on Intraoral Pressure, Closure Duration, and VOT During Phonation of Korean Bilabial Stop Consonants (한국어 양순 파열음 발음시 구강내압과 폐쇄기, VOT에 대한 연구)

  • Pyo Hwa Young;Choi Hong Shik
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.390-398
    • /
    • 1996
  • Acoustic analysis study was performed on 20 normal subjects by speaking nonsense syllables composed of Korean bilabial stops(/p, $p^{*}$/, ph/) and their Preceding and/or following vowel /a/(that is, [pa, $p^{*}a$, pha, apa, $ap^{*}a$, apha]) with an ultraminiature pressure sensor in their mouths. Speech materials were phonated twice, once with a moderate voice, another time with a loud voice. The acoustic signal and intraoral pressure were recorded simultaneously on computer. By these procedures, we were to measure the intraoral pressure, closure duration and VOT of Korean bilabial stops, and to compare the values one another according to the intensity of phonation and the position of the target consonants. Intraoral pressure was measured by the peak intraoral pressure value of its wave; closure duration by the time interval between the onset of intraoral pressure build-up and the burst meaning the release of closure; Voice onset time(VOT) by the time interval between the burst and the onset of glottal vibration. Heavily aspirated bilabial stop consonant /ph/ showed the highest intraoral pressure value, unaspirated /p$^{*}$/, the second, slightly aspirated /p/, the lowest. The syllable initial bilabial stops showed higher intraoral pressure than word initial stops, and the value of loudly phonated consonants were higher than moderate consonants. The longest closure duration period was that of /$p^{*}$/ and the shortest, /p/, and the duration was longer in word initial position and in the moderate voice. In VOT, the order of the longest to shortest was /ph/, /p/, /$p^{*}$/, and the value was shorter when the consonant was in intervocalic position and when it was phonated with a loud voice.

  • PDF

A Study on Nondestructive Technique Using Laser Technique for Evaluation of Carbon fiber Reinforced Plastic (레이저를 이용한 탄소섬유강화 복합재료의 비파괴평가 기법에 관한 연구)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Byun, Joon-Hyung;Seo, Kyeong-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2005
  • Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate CFRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluate the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation. In addition, laser interferometry was used to receive ultrasonic wave in CFRP and frequency was analysed.