• Title/Summary/Keyword: Sensor resistance

Search Result 855, Processing Time 0.026 seconds

The Effect of Plantar Foot Pressure Negotitating Obstacles in the Elderly

  • Seo, Kyo-Chul;Kim, Hyeun-Ae;Kim, Hee-Tak;Kim, Sung-Gyung;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.15-22
    • /
    • 2011
  • Purpose: This research investigated falls due to obstacles that occur among elderly people by assessing changes in the values of plantar foot force, peak force, and plantar foot pressure in elderly subjects while they were stepping over obstacles of different heights. Methods: The subjects were 20 elderly people aged 70-80 years; Pressure was measured on flat ground(0 cm), and after installing obstacles of 8 cm and 12 cm using the F-scan system, which is a resistance-type pressure sensor. A one-way analysis of variance was performed to compare pressure on each part of the foot according to various heights after collecting data using the Tekscan program. The least significant difference test was used for the post-hoc analysis, A p-value <0.05 was considered significant. Results: The force value for the toe area (parts 1, and 2) and contact pressure increased significantly with the 12 cm obstacle (p<0.05). The peak force value and the peak contact pressure for part 1 increased significantly with the 12 cm obstacle (p<0.05). Conclusion: Larger changes appeared in the functions and structure of the foot while subjects walked over obstacles of different heights compared to flatland walking. This result suggests that people have safety strategies to prevent falls, and that there is a need for a more realistic approach through practice to overcome obstacles of various heights to prevent falls.

Development and Implementation of an Over-Temperature Protection System for Power Semiconductor Devices (전력용 반도체 소자의 과열보호시스템 설계 및 구현)

  • Choi, Nak-Gwon;Lee, Sang-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • This paper presents the practical implementation of an over-temperature protection system for power semiconductor devices. In the proposed system, temperature variation is provided with just using $R_{ds(on)}$ characteristics of power MOSFET, while extra device such as a temperature sensor or an over-temperature detection transistor is needed to monitor the temperature in the conventional method. The proposed protection technique is experimentally tested on IRF840 power MOSFET. The PIC microcontroller PIC16F877A is used for the implementation of the proposed protection algorithm. The built-in 10-bit A/D converter is utilized for detecting voltage variance between a drain and a source of IRF840. The induced temperature-resistance relationship based on the measured drain-source voltage, supplies a gate signal to the power MOSFET. If detected temperature's voltage exceeds any a protection temperature's voltage, the microcontroller removes the trigger signal from the power MOSFET. These test results showed satisfactory performances of the proposed protection system in term of accuracy within 1.5%.

Postmortem analysis of a failed liquid nitrogen-cooled prepolarization coil for SQUID sensor-based ultra-low field magnetic resonance

  • Hwang, Seong-Min;Kim, Kiwoong;Yu, Kwon Kyu;Lee, Seong-Joo;Shim, Jeong Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.44-48
    • /
    • 2014
  • A liquid nitrogen-cooled prepolarization ($B_p$) coil made for ultra-low field nuclear magnetic resonance and magnetic resonance imaging (ULF-MR) designed to generate 7 mT/A was fabricated. However, with suspected internal insulation failure, the coil was investigated in order to find out the source of the failure. This paper reports detailed build of the failed $B_p$ coil and a number of analysis methods utilized to figure out the source and the mode of failure. The analysis revealed that pyrolytic graphite sheet linings put on either sides of the coil for better thermal conduction acted as an electrical bridge between inner and outer layers of the coil to short out the coil whenever a moderately high voltage was applied across the coil. A simple model circuit simulation corroborated the analysis and further revealed that the failed insulation acted effectively as a damping resistor of $R_{d,eff}=6{\Omega}$ across the coil. This damping resistance produced a 50 ms-long voltage tail after the coil current was ramped down, making the coil not suitable for use in ULF-MR, which requires complete removal of magnetic field from $B_p$ coil within milliseconds.

A Study on the Generating Characteristics Depending on Driving System of a Honeycomb Shaped Piezoelectric Energy Harvester (벌집형 압전 발전 소자의 구동방식에 따른 출력 특성)

  • Jeong, Seong-Su;Kang, Shin-Chul;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, energy harvesting technology is increasing due to the fossil fuel shortages. Energy harvesting is generating electrical energy from wasted energies as sunlight, wind, waves, pressure, and vibration etc. Energy harvesting is one of the alternatives of fossil fuel. One of the energy harvesting technologies, the piezoelectric energy harvesting has been actively studied. Piezoelectric generating uses a positive piezoelectric effect which produces electrical energy when mechanical vibration is applied to the piezoelectric device. Piezoelectric energy harvesting has an advantage in that it is relatively not affected by weather, area and place. Also, stable and sustainable energy generation is possible. However, the output power is relatively low, so in this paper, newly designed honeycomb shaped piezoelectric energy harvesting device for increasing a generating efficiency. The output characteristics of the piezoelectric harvesting device were analyzed according to the change of parameters by using the finite element method analysis program. One model which has high output voltage was selected and a prototype of the honeycomb shaped piezoelectric harvesting device was fabricated. Experimental results from the fabricated device were compared to the analyzed results. After the AC-DC converting, the power of one honeycomb shaped piezoelectric energy harvesting device was measured 2.3[mW] at road resistance 5.1[$K{\Omega}$]. And output power was increased the number of harvesting device when piezoelectric energy harvesting device were connected in series and parallel.

Sensitivity and Rejection Capability of Thermal Asperity Induced by Sub-Micron Contamination Particles (미세 입자에 의한 thermal asperity의 민감도 해석 및 감소 방안)

  • 좌성훈
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.310-317
    • /
    • 2000
  • With use of (G)MR head, thermal asperity (TA) has been a big concern in drive industry. In this study, we investigated several factors of heads and disks which affects the TA sensitivity of the drive. TA experiments were conducted by introducing the particles on the drives using a particle injection chamber. It was found that the slider ABS shape can help to reduce TA or contamination in the head/media interface. However, TA sensitivity of the drive mainly depend on the intrinsic property of (G)MR sensor. GMR head is much less sensitive to TA compared with MR head. However, in case that the same bias current was applied for both of MR and GMR head, TA sensitivity of GMR head became almost identical to that of MR head. Therefore it was found that the bias current is a dominant factor in determining TA sensitivity of the head. TA sensitivity of different types of disks was also studied. The scratch resistance of the carbon overcoat layer is the one of the main factors which influence TA rejection capability of the disks.

  • PDF

Waterjet Propulsion Model Experiment for Catamaran Ship (쌍동선의 워터제트 추진 모형시험)

  • Choi, G.I.;Min, K.S.;Ann, Y.W.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • A screw propeller is usually accepted as a propulsor of many kinds of ships. However, for high speed vessels, screw propeller has large cavitation area on the blades so propeller efficiency is decreased and erosion can be happened. To avoid this problem, supercavitating propeller and waterjet are generally used for high speed vessels. In this paper, we introduced the self-propulsion test procedure which has been developed for high speed vessels in Hyundai Maritime Research Institute. The model ship used in experiment represents catamaran about 5.3 m in length. To minimize the experimental errors, two impellers were driven by a single motor. Thrust was calculated by converting the measured pressure to flow rates at the nozzle exit. The test procedure is composed of resistance test, self propulsion test and analysis. In order to measure the pressure, pressure tabs were installed around the nozzle exit and connected to the pressure sensor by vinyl tube.

  • PDF

Application of Combined-Type Sensors for the Behavioral Measurement of Concrete Beams (콘크리트 보의 거동 측정을 위한 조합형 센서의 활용)

  • Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.454-461
    • /
    • 2003
  • This study addressed a procedure to carry out an experimental study on a behavior of simple and continuous concrete beams. For this purpose, sample concrete beams were fabricated and sensors for the measurement of strains and deflections were attached both on the surface of the beams and inside them. Two types of sensors were used to measure strains associated with loading: electric resistance strain sensors and fiber optic sensors. Displacement gauges were also attached on the bottoms of beams to investigate the behavior of beams more rationally. The behavior of the beams was then evaluated throughout the results measured from different sensors while they were subject to steady loading up to failure. From results of this study, it was found that concurrent use of sensors and displacement gauges is helpful in investigating the behavior of concrete beams more effectively. Especially, combined-type strain sensors specifically fabricated in this experiment were found not to be affected by the occurrence of cracks so significantly and to be very effective in monitoring strains of concrete structure. It was also observed that beams show nonlinear force-displacement relationship and reinforcing bars take charge of resisting the external force once cracks occur in concrete beams.

High Frequency Impedance of Meander Pattern Fabricated by Co-base Amorphous Ribbon (Co계 아몰퍼스리본을 이용하여 제작한 마안더패턴의 고주파 임피던스특성)

  • Shin, Kwang-Ho;Park, Kyung-Il;Geon, Sa-Gong;Song, Jae-Yeon;Kim, Young-Hak
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.160-164
    • /
    • 2003
  • The external magnetic field dependency of the impedance, resistance, and inductance of the meander pattern fabricated by using Co-base amorphous ribbon has been investigated in the frequency range of 300 ㎑∼1 ㎓. The amorphous ribbon was patterned to the meander pattern through conventional photolithography and wet etching process. The extremely high sensitivity in impedance changing ratio by external magnetic field was observed. This is due to the transverse magnetic anisotropy the pattern which was induced by magnetic field annealing. The impedance had peak value at the external field of -13 Oe and the impedance changing ratio 100 ${\times}$ (Z$\_$13/-Z$\_$0/)/Z$\_$0/) was about 210% at the frequency of 50 MHz.

The Enhancement of Selectivity in Thick Film SnO2 Gas Sensors by Additives and Pattern Recognition (첨가제 및 패턴인식에 의한 후막 SnO2 가스센서의 선택성 향상)

  • 정해원;김종명;박희숙;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1073-1077
    • /
    • 2003
  • The Sn $O_2$-based gas sensors can detect inflammable and toxic gases of low concentration by the modulation of surface resistance, but they lack in selectivity on the whole. To give selectivity to the Sn $O_2$-based gas sensors, studies on the sensing mechanism, selective gas sensing materials and signal processing techniques are demanded. Ethanol (C$_2$ $H_{5}$OH) and acetonitrile ($CH_3$CN) were confirmed to undergo catalytic oxidation on Sn $O_2$ by gas chromatography. PdCl$_2$-doped Sn $O_2$ showed excellent sensitivity to ethanol and acetonitrile, while La$_2$ $O_3$-doped Sn $O_2$ showed excellent sensitivity to ethanol, but poor sensitivity to acetonitrile. Using these two sensors and pattern recognition, the selectivity to acetonitrile is greatly enhanced. The minimum detection level of acetonitrile was 15 ppm in air and 20 to 100 ppm when exposed to interfering gases together with acetonitrile.

A Study on Body Temperature Measurement of Woven Textile Electrode Using Lock-In-Amp based on Microprocessor (마이크로 프로세서 기반 Lock-In-Amp를 이용한 텍스타일 직물전극의 체온 측정에 관한 연구)

  • Lee, Kang-Hwi;Lee, Sung-Su;Lee, Jeong-Whan;Song, Ha-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1141-1148
    • /
    • 2017
  • Generally, a thermistor made by sintering a metal oxide is widely used to measure the ambient temperature. This thermistor is widely used not only for industrial use but also for medical use because of its excellent sensitivity, durability, temperature change characteristics and low cost. In particular, the normal body temperature is 36.9 degrees relative to the armpit temperature, and it is most closely related to the circulating blood flow. Previous studies have shown that body temperature changes during biomechanical changes and body temperature changes by anomalous signs or illnesses. Therefore, in this study, we propose a Lock-In-Amp design to detect minute temperature changes of clothing and thermistor wired by a preacher as a method to regularly measure body temperature in daily life. Especially, it is designed to measure the minute resistance change of the thermistor according to body temperature change even in a low-cost microprocessor environment by using a micro-processor-based Lock-In-Amp, and a jacquard and the thermistor is arranged so as to be close to the side, so that the reference body temperature can be easily measured. The temperature was measured and stored in real time using short-range wireless communication for non - restraint temperature monitoring. A baby vest was made to verify its performance through temperature experiments for infants. The measurement of infant body temperature through the existing skin sensor or thermometer has limitations in monitoring infant body temperature for a long time without restriction. However, it can be overcome by using the embroidery fabric based micro temperature monitoring wireless monitoring device proposed in this study.