• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.036 seconds

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

A Multi Path Routing Scheme for Data Aggregation in Wireless Sensor Networks (무선 센서 네트워크에서 데이타 병합을 위한 다중 경로 라우팅 기법)

  • Son, Hyeong-Seo;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.206-210
    • /
    • 2009
  • In this paper, we propose a new routing scheme based on multi-path routing which provides uniform energy consumption for all nodes. This scheme adds a new type of root node for constructing multi-path. The sink node delegates some partial roles to these root nodes. Such root nodes carry out path establishment independently. As a result, each nodes consume energy more uniformly and the network life-time will be extended. Through simulation, we confirmed that energy consumption of the whole network is scattered and the network life-time is extended. Moreover, we show that the proposed routing scheme improves the performance of network compared to previous routing strategies as the number of source nodes increases.

A Collaborative decision making for distributed detection system (분산 탐지 시스템을 위한 협업적 의사 결정)

  • Farooqi, Ashfaq Hussain;Jin, Wang;Khan, Farrukh Aslam;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.115-117
    • /
    • 2011
  • Intrusion detection systems (IDS) are supposed to be an efficient safety measure against inside attacks. In purely distributed IDS approach, IDS agent is installed in every node. It checks abnormal behavior of neighboring nodes locally. It collects the data that it receives from nodes in its radio range. Sensor nodes audit that data and generate alerts for abnormal activity. Here, there are two ways of taking decision. First, it can take decision individually and second, it can communicate with its neighbor to find the status of the claimed compromised nodes. In this paper, we propose a collaborative decision making scheme for purely distributed detection system. The proposed scheme is light weight compared to consensus based validation methodology. It provides a better scheme to find intrusions by interacting with other nodes.

An Energy Effective Protocol for Clustering Ad Hoc Network

  • Lee, Kang-Whan;Chen, Yun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.117-121
    • /
    • 2008
  • In ad hoc network, the scarce energy management of the mobile devices has become a critical issue in order to extend the network lifetime. Therefore, the energy consumption is important in the routing design, otherwise cluster schemes are efficient in energy conserving. For the above reasons, an Energy conserving Context aware Clustering algorithm (ECC) is proposed to establish the network clustering structure, and a routing algorithm is introduced to choose the Optimal Energy Routing Protocol (OERP) path in this paper. Because in ad hoc network, the topology, nodes residual energy and energy consuming rate are dynamic changing. The network system should react continuously and rapidly to the changing conditions, and make corresponding action according different conditions. So we use the context aware computing to actualize the cluster head node, the routing path choosing. In this paper, we consider a novel routing protocol using the cluster schemes to find the optimal energy routing path based on a special topology structure of Resilient Ontology Multicasting Routing Protocol (RODMRP). The RODMRP is one of the hierarchical ad hoc network structure which combines the advantage of the tree based and the mesh based network. This scheme divides the nodes in different level found on the node energy condition, and the clustering is established based on the levels. This protocol considered the residual energy of the nodes and the total consuming energy ratio on the routing path to get the energy efficiently routing. The proposed networks scheme could get better improve the awareness for data to achieve and performance on their clustering establishment and messages transmission. Also, by using the context aware computing, according to the condition and the rules defined, the sensor nodes could adjust their behaviors correspondingly to improve the network routing.

Distributed Sensor Node Localization Using a Binary Particle Swarm Optimization Algorithm (Binary Particle Swarm Optimization 알고리즘 기반 분산 센서 노드 측위)

  • Fatihah, Ifa;Shin, Soo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.9-17
    • /
    • 2014
  • This paper proposes a binary particle swarm optimization (BPSO) algorithm for distributed node localization in wireless sensor networks (WSNs). Each unknown node performs localization using the value of the measured distances from three or more neighboring anchors, i.e., nodes that know their location information. The node that is localized during the localization process is then used as another anchor for remaining nodes. The performances of particle swarm optimization (PSO) and BPSO in terms of localization error and computation time are compared by using simulations in Matlab. The simulation results indicate that PSO-based localization is more accurate. In contrast, BPSO algorithm performs faster for finding the location of unknown nodes for distributed localization. In addition, the effects of transmission range and number of anchor nodes on the localization error and computation time are investigated.

Experimental Design of AODV Routing Protocol with Maximum Life Time (최대 수명을 갖는 AODV 라우팅 프로토콜 실험 설계)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.29-45
    • /
    • 2017
  • Ad hoc sensor network is characterized by decentralized structure and ad hoc deployment. Sensor networks have all basic features of ad hoc network except different degrees such as lower mobility and more stringent energy requirements. Existing protocols provide different tradeoffs among some desirable characteristics such as fault tolerance, distributed computation, robustness, scalability and reliability. wireless protocols suggested so far are very limited, generally focusing on communication to a single base station or on aggregating sensor data. The main reason having such restrictions is due to maximum lifetime to maintain network activities. The network lifetime is an important design metric in ad hoc networks. Since every node does a router role, it is not possible for other nodes to communicate with each other if some nodes do not work due to energy lack. In this paper, we suggest an experimental ad-hoc on-demand distance vector routing protocol to optimize the communication of energy of the network nodes.The load distribution avoids the choice of exhausted nodes at the route selection phase, thus balances the use of energy among nodes and maximizing the network lifetime. In transmission control phase, there is a balance between the choice of a high transmission power that lead to increase in the range of signal transmission thus reducing the number of hops and lower power levels that reduces the interference on the expense of network connectivity.

Virtual Location Information based Routing Scheme in Wireless Ad-Hoc Networks (무선 애드 혹 네트워크에서 가상위치정보 기반 라우팅 기법)

  • Youn, JooSang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.77-85
    • /
    • 2013
  • Recently, location information based routing protocol has been studied to estimate end-to-end path in wireless ad-hoc network. This protocol assumes all nodes can get heir location information via GPS devices and floods only limited area with routing message through acquired location information. Therefore, this protocol has advantage that can reduce the number of routing message than the existing IP-based routing protocols. In addition, all nodes enabling this protocol must acquire their own location information to participate in the location-based routing. However, recent because of the miniaturization of sensor node, sensor node without GPS function has been launched. Therefore in case of the sensor node that does not know location information, it is impossible to participate in the ad hoc network configuration and location information based routing. In this paper, a virtual location information based routing scheme is proposed for wireless nodes without GPS function to be able to participate in location information based routing within ad hoc network environments consisting of wireless nodes with GPS function and wireless nodes without GPS function. Therefore, the proposed protocol has the advantage that a wireless node without a GPS function is able to participate in ad hoc network configuration and the location information based routing.

Design Self-Organization Routing Protocol for supporting Data Security in Healthcare Sensor Network (헬스케어 센서 네트워크에서 데이터 보안을 지원한 자기구성 라우팅 프로토콜 설계)

  • Nam, Jin-Woo;Chung, Yeong-Jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.517-520
    • /
    • 2008
  • Wireless sensor network supporting healthcare environment should provide customized service in accordance with context information such as continuous location change and status information for people or movable object. In addition, we should consider data transmission guarantees a person's bio information and privacy security provided through sensor network. In this paper analyzes LEACH protocol which guarantees the dynamic self-configuration, energy efficiency through configuration of inter-node hierarchical cluster between nodes and key distribution protocol used for security for data transmission between nodes. Based on this analysis result, we suggested self-configuration routing protocol supporting node mobility which is weakness of the existing LEACH protocol and data transmission method by applying key-pool pre-distribution method whose memory consumption is low, cluster unit public key method to sensor node.

  • PDF

A Localization Using Multiple Round Trip Times in Wireless Sensor Networks (무선 센서 네트워크에서 다중 왕복시간차를 이용한 위치측정)

  • Jang, Sang-Wook;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.370-378
    • /
    • 2007
  • In wireless sensor networks (WSNs), thousands of sensors are often deployed in a hostile environment. In such an environment, WSNs can be applied to various applications by using the absolute or relative location information of the sensors. Until now, the time-of-arrival (TOA) based localization method has been considered most accurate. In the TOA method, however, inaccuracy in distance estimation is caused by clock drift and clock skew between sensor nodes. To solve this problem, several numbers of periodic time synchronization methods were suggested while these methods introduced overheads to the packet traffic. In this paper, we propose a new localization method based on multiple round-trip times (RTOA) of a signal which gives more accurate distance and location estimation even in the presence of clock skew between sensor nodes. Our experimental results show that the Proposed RTOA method gives up to 93% more accurate location estimation.

A Channel Assignment based on Transmission Distance on Wireless Multi-Channel Sensor Networks (다중 채널 무선 센서 네트워크에서 전송 거리 기반 채널 할당)

  • Park, Si-Yong;Cho, Hyun-Sug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.183-190
    • /
    • 2014
  • In this paper, we propose a transmission scheme to reduce energy consumption on wireless multi-channel sensor networks. This proposed scheme differentiates the number of usable channels based on a priority. Sensor nodes consume the most energy to transmit data. Also, as transmission distance is far, they consume the more energy. Therefore retransmission due to transmission failure of sensor nodes that are long transmission distance is required more energy consumption. In this paper, we provide a stable transmission environment by allocating a high priority for data that is sent far away. The received data with a high priority is more allocated the number of usable channels. In the experiment results, the receiving failure probability and the restransmission energy consumption of proposed scheme is superior to ones of comparison scheme.