• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.028 seconds

Data Dissemination Protocol based on Home Agent and Access Node for Mobile Sink in Sensor Network (센서 네트워크에서 홈에이젼트와 액세스 노드에 기반한 모바일 싱크를 위한 데이터 전송 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.15C no.5
    • /
    • pp.383-390
    • /
    • 2008
  • The mobile sink is most suitable to guarantee the real time processing to events in ubiquitous environment. However it brings many challenges to wireless sensor networks. In particular, the question of how to transfer the collected data to the mobile sink is an important topic in the aspect of effective management of wireless sensor nodes. In this paper, a new data dissemination model is proposed. Since this method uses the home agent and the access node concepts, it provides reliable and efficient data delivery to mobile sink with minimum overhead. In this proposed method, the information of the mobile sink which is constantly moving is informed only to the home agent node and the access node, instead of all sensor nodes. Thus, the collected data from sensor nodes are transferred to the fixed home agent and it sends these data to the mobile sink. Since the confliction phenomenon between data packets in wireless networks could be reduced, the success ratio of data arriving in the mobile sink is highly enhanced. In our experiments, the proposed method reduces the number of broadcast packets so that it saves the amount of energy consumed for transmitting and receiving the data packets. This effect contributes to prolong the lifetime of the wireless sensor networks operated by batteries.

A Design of Fire Monitoring System Based On Unmaned Helicopter and Sensor Network (무인헬기 및 센서네트워크 기반 화재 감시 시스템 설계)

  • Yun, Dong-Yol;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.173-178
    • /
    • 2007
  • Recently, fires happen to occur owing to various factors. However, the demage caused by the fire is eyer increasing because timely actions could not be taken. To reduce the demage, a development of fire detection system which makes it possible to take adequate actions is requited. In this work, a sensor network-based fire detection system which utilizes both sensor nodes equipped with smoke sensor and unmaned helicopter is proposed. The proposed system is composed of unmaned helicopter which can gather the measurement data from the deployed sensor nodes and the embedded system which can get visual information on the firing spot and transmit these images to a remote server computer. The proposed system is applied to actual test bed to verify its feasibility.

A Robust Biometric-based User Authentication Protocol in Wireless Sensor Network Environment (무선센서네트워크 환경에서 생체기반의 개선된 사용자 인증 프로토콜)

  • Shin, Kwang-Cheul
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.3
    • /
    • pp.107-123
    • /
    • 2013
  • In a wireless sensor network environment, it is required to ensure anonymity by keeping sensor nodes' identifiers not being revealed and to support real-time authentication, lightweight authentication and synchronization. In particular, there exist possibilities of location information leakage by others, privacy interference and security vulnerability when it comes to wireless telecommunications. Anonymity has been an importance issue in wired and wireless network environment, so that it has been studied in wide range. The sensor nodes are interconnected among them based on wireless network. In terms of the sensor node, the researchers have been emphasizing on its calculating performance limit, storage device limit, and smaller power source. To improve of biometric-based D. He scheme, this study proposes a real-time authentication protocol using Unique Random Sequence Code(URSC) and variable identifier for enhancing network performance and retaining anonymity provision.

A Node Scheduling Control Scheme with Time Delay Requirement in Wireless Sensor Actuator Networks (무선 센서 엑츄에이터 네트워크에서의 시간지연을 고려한 노드 스케줄링 제어 기법)

  • Byun, Heejung
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.17-23
    • /
    • 2016
  • Wireless sensor-actuator networks (WSANs) enhance the existing wireless sensor networks (WSNs) by equipping sensor nodes with an actuator. The actuators work with the sensor nodes and perform application-specific operations. The WSAN systems have several applications such as disaster relief, intelligent building, military surveillance, health monitoring, and infrastructure security. These applications require capability of reliable data transfer to act responsively and accurately. Biologically inspired modeling techniques have received considerable attention for achieving robustness, scalability, and adaptability, while retaining individual simplicity. In this paper, an epidemic-inspired algorithm for data dissemination with delay constraints while minimizing energy consumption in WSAN is proposed. The steady states and system stability are analyzed using control theory. Also, simulation results indicate that the proposed scheme provides desirable dissemination delay and energy saving.

Collaborative Stepwise Movement of Mobile Sensor Nodes for Energy Efficient Dynamic Sensor Network Coverage Maintenance (모바일 센서노드들의 협동형 단계적 이동기법 기반의 에너지 효율적인 동적 센서네트워크 커버리지 관리)

  • Han, Ngoc-Soc;Kim, Seong-Whan
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.535-542
    • /
    • 2009
  • Wireless Sensor Network (WSN) is a wireless network consisting of spatially distributed autonomous devices, using sensors to cooperatively monitor physical or environmental conditions. WSNs face the critical challenge of sustaining long-term operation on limited battery energy. Coverage maintenance has been proposed as a promising approach to prolong network lifetime. Mobile sensors equipped with communication devices can be leveraged to overcome the coverage problem. In this paper, we propose a stepwise movement scheme using perimeter coverage property for the coverage maintenance problem. In our scheme, each sensor monitors neighboring dead nodes, determines vulnerable node (i.e. dead node which makes uncovered area), computes the center of uncovered area HC, and makes a coordinated stepwise movement to compensate the uncovered area. In our experimental results, our scheme shows at least 50 % decrease in the total moving distance which determines the energy efficiency of mobile sensor.

An Energy Efficient Cluster-Based Local Multi-hop Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 클러스터 기반 지역 멀티홉 라우팅 프로토콜)

  • Kim, Kyung-Tae;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.495-504
    • /
    • 2009
  • Wireless sensor networks (WSN) consisting of a largenumber of sensors aims to gather data in a variety of environments and is beingused and applied in many different fields. The sensor nodes composing a sensornetwork operate on battery of limited power and as a result, high energyefficiency and long network lifetime are major goals of research in the WSN. Inthis paper we propose a novel cluster-based local multi-hop routing protocolthat enhances the overall energy efficiency and guarantees reliability in thesystem. The proposed protocol minimizes energy consumption for datatransmission among sensor nodes by forming a multi-hop in the cluster.Moreover, through local cluster head rotation scheme, it efficiently manageswaste of energy caused by frequent formation of clusters which was an issue inthe existing methods. Simulation results show that our scheme enhances energyefficiency and ensure longer network time in the sensor network as comparedwith existing schemes such as LEACH, LEACH-C and PEACH.

Grid-based Energy Efficient Routing Protocol for Sensor Networks (센서 네트워크를 위한 그리드 기반의 에너지 효율절인 라우팅 프로토콜)

  • Jung, Sung-Young;Lee, Dong-Wook;Kim, Jai-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.216-220
    • /
    • 2008
  • Sensor nodes in wireless network have several limitations such as lack of energy resource and network bandwidth. There are many researches to extend lifetime of sensor network and enhance availability. However, most of the previous researches didn't consider the mobile sink node. Those researches aren't suitable in the environment having mobile sinks. In this paper. we propose a scheme that reduces communication overheads and energy consumptions and improves reliability in routing path setup. Proposed scheme has excellent scalability without degrading performance in environment where many sink nodes exist and/or the network size is huge. Proposed scheme saves the energy consumption up to 70% in comparison with the previous grid-based and cluster-based protocol. As a result, proposed scheme increases the lifetime of sensor network and enhances availability of wireless sensor network.

Implementation of Personalized Mobile Agent System using Agilla in Ubiquitous Sensor Network (USN환경에서 Agilla를 이용한 개인화된 모바일 에이전트 시스템 구현)

  • Kim, Gang-Seok;Lee, Dong-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.203-210
    • /
    • 2011
  • The current sensor network analyzes the data collected by the sensing of fixed sensor nodes and provides a service. However, this method cannot actively handle the state and the change in the position of people, 'the target for sensing and the change in the environment', including home automation, building automation and real-time road & weather information, and healthcare environment, etc. To support a dynamic situation which is appropriate for an individual in this diverse environment, it is necessary to provide actively differentiated specific information according to the movement of people and the changes in the environment. In this study, a individualized sensor mobile agent middleware which provides the individualized information (the location of fire incidence and the trace for the path of spread), has been realized through the sensor network environment constructed by the installation of wireless sensor nodes mounted with mobile agent middlewares in buildings.

A Study on Storing Node Addition and Instance Leveling Using DIS Message in RPL (RPL에서 DIS 메시지를 이용한 Storing 노드 추가 및 Instance 평준화 기법 연구)

  • Bae, Sung-Hyun;Yun, Jeong-Oh
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.590-598
    • /
    • 2018
  • Recently, interest in IoT(Internet of Things) technology, which provides Internet services to objects, is increasing. IoT offers a variety of services in home networks, healthcare, and disaster alerts. IoT with LLN(Low Power & Lossy Networks) feature frequently loses sensor node. RPL, the standard routing protocol of IoT, performs global repair when data loss occurs in a sensor node. However, frequent loss of sensor nodes due to lower sensor nodes causes network performance degradation due to frequent full path reset. In this paper, we propose an additional selection method of the storage mode sensor node to solve the network degradation problem due to the frequent path resetting problem even after selecting the storage mode sensor node, and propose a method of equalizing the total path resetting number of each instance.

Role-based Self-Organization Protocol of Clustering Hierarchy for Wireless Sensor Networks (무선 센서 네트워크를 위한 계층형 클러스터링의 역할 기반 자가 구성 프로토콜)

  • Go, Sung-Hyun;Kim, Hyoung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.137-145
    • /
    • 2008
  • In general, a large-scale wireless sensor network(WSNs) is composed of hundreds of or thousands of sensor nodes. In this large-scale wireless sensor networks, it is required to maintain and manage the networks to lower management cost and obtain high energy efficiency. Users should be provided with sensing service at the level of quality for users through an efficient system. In evaluating the result data quality provided from this network to users, the number of sensors related to event detection has an important role. Accordingly, the network protocol which can provide proper QoS at the level of users demanding quality should be designed in a way such that the overall system function has not to be influenced even if some sensor nodes are in error. The energy consumption is minimized at the same time. The protocol suggested in this article is based on the LEACH protocol and is a role-based self-Organization one that is appropriate for large-scale networks which need constant monitoring.

  • PDF