• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.026 seconds

Considering the accuracy and efficiency of the wireless sensor network Support Plan (무선 센서 네트워크에서의 정확도와 효율성을 고려한 기술 지원 방안)

  • You, Sanghyun;Choi, Jaehyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.96-98
    • /
    • 2014
  • Wireless Sensor Network(WSN) is a wireless real-time information(Acquired from the sensor nodes that have the computing power and wireless communication capabilities.) collected, and to take advantage of processing techniques. Currently it is very diverse, such as environmental monitoring, health care, security, smart home, smart grid applications is that. Thus it is required in the wireless sensor network, the algorithm for the efficient use of the limited energy capacity. Suggested by the algorithm for selecting a cluster head node for a hybrid type and clustered, by comparing the amount of energy remaining and a connection between the nodes In this paper, we aim to increase efficiency and accuracy of the wireless sensor network.

  • PDF

Uniform Sensor-node Request Scheme for the Recovery of Sensing Holes on IoT Network (IoT 네트워크의 센싱홀 복구를 위한 센서 이동 균등 요청 방법)

  • Kim, Moonseong;Park, Sooyeon;Lee, Woochan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2020
  • When IoT sensor nodes are deployed in areas where data collection is challenging, sensors must be relocated if sensing holes occur due to improper placement of sensors or energy depletion, and data collection is impossible. The sensing hole's cluster header transmits a request message for sensor relocation to an adjacent cluster header through a specific relay node. However, since a specific relay node is frequently used, a member sensor located in a specific cluster area adjacent to the sensing hole can continuously receive the movement message. In this paper, we propose a method that avoids the situation in which the sensing hole cluster header monopolizes a specific relay node and allows the cluster header to use multiple relay nodes fairly. Unlike the existing method in which the relay node immediately responds to the request of the header, the method proposed in this paper solves a ping-pong problem and a problem that the request message is concentrated on a specific relay node by applying a method of responding to the request of the header using a timer. OMNeT++ simulator was used to analyze the performance of the proposed method.

Routing Protocol for Wireless Sensor Networks Based on Virtual Force Disturbing Mobile Sink Node

  • Yao, Yindi;Xie, Dangyuan;Wang, Chen;Li, Ying;Li, Yangli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1187-1208
    • /
    • 2022
  • One of the main goals of wireless sensor networks (WSNs) is to utilize the energy of sensor nodes effectively and maximize the network lifetime. Thus, this paper proposed a routing protocol for WSNs based on virtual force disturbing mobile Sink node (VFMSR). According to the number of sensor nodes in the cluster, the average energy and the centroid factor of the cluster, a new cluster head (CH) election fitness function was designed. At the same time, a hexagonal fixed-point moving trajectory model with the best radius was constructed, and the virtual force was introduced to interfere with it, so as to avoid the frequent propagation of sink node position information, and reduce the energy consumption of CH. Combined with the improved ant colony algorithm (ACA), the shortest transmission path to Sink node was constructed to reduce the energy consumption of long-distance data transmission of CHs. The simulation results showed that, compared with LEACH, EIP-LEACH, ANT-LEACH and MECA protocols, VFMSR protocol was superior to the existing routing protocols in terms of network energy consumption and network lifetime, and compared with LEACH protocol, the network lifetime was increased by more than three times.

A Method of Hierarchical Address Autoconfiguration base on Hop-count in 6LoWPAN (6LoWPAN에서 홉-수 기반 계층적 자동주소할당 방법)

  • Kim, Dong-Kyu;Kim, Jung-Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.3
    • /
    • pp.11-21
    • /
    • 2010
  • Increase in the number of sensor nodes in sensor networks and sensor node to automatically assign addresses are needed. The method developed to address existing severe wasting, coordinators have all address information, each sensor node when addressing the shortcomings are a lot of traffic. In this paper, 6LoWPAN automatically from the sensor nodes capable of efficiently addressing Hop-Count based hierarchical address allocation algorithm is proposed. How to propose a hop-count of divided areas are separated, with no overlap and can be assigned a unique address, DAD(Duplicate Address Detection) reduced area. Perform DAD to reduce traffic, packet transmission in the IP header destination address, respectively, with a minimum 32-bit compression and packet transmission over a non-compression method to reduce the number of 11.1%.

A Novel Routing Structure Method For Data Aggregation Scheduling in Battery-Free Wireless Sensor Networks (무배터리 무선 센서 네트워크에서의 데이터 집적 스케줄링에 관한 새로운 라우팅 구조 방법)

  • Vo, Van-Vi;Kim, Moonseong;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.94-97
    • /
    • 2022
  • The emerging energy harvesting technology, which has been successfully integrated into Wireless Sensor Networks, enables sensor batteries to be charged using renewable energy sources. In the meantime, the problem of Minimum Latency Aggregation Scheduling (MLAS) in battery-powered WSNs has been well studied. However, because sensors have limited energy harvesting capabilities, captured energy is limited and varies greatly between nodes. As a result, all previous MLAS algorithms are incompatible with Battery-Free Wireless Sensor Networks (BF-WSNs). We investigate the MLAS problem in BF-WSNs in this paper. To make the best use of the harvested energy, we build an aggregation tree that leverages the energy harvesting rates of the sensor nodes with an intuitive explanation. The aggregation tree, which determines sender-receiver pairs for data transmission, is one of the two important phases to obtain a low data aggregation latency in the BF-WSNs.

Power Consumption Analysis of Sensor Node According to Beacon Signal Interval in IEEE 802.15.4 Wireless Star Sensor Network (IEEE 802.15.4 무선 스타 센서 네트워크에서 비콘 신호 주기에 따른 센서 노드 전력소모량 분석)

  • Yoo Young-Dae;Choi Jung-Han;Kim Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.811-820
    • /
    • 2006
  • In this paper, The correlation of the power consumption of sensor node is analyzed according to the analyze parameter in IEEE 802.15.4 star sensor network. And It is studied the influence on analysis parameter. The power consumption of sensor network in transmission process and average transmission power consumption drives to numerical formula. And CSEM WiseNET system measurement value is used. As a simulation result, The power consumption of sensor node in star network consist of 10 sensor nodes is more than 20 % that in single network in average. When beacon signal interval is 0.1 second in all frequency bands, the power consumption of sensor node in up-link is more than 2.5 times that in down-link in average. When beacon signal interval is 1 second and the number of sensor nodes increases to 100 and sensing data increases to 100 byte, the power consumption of sensor node increases to 2.3 times. And The superior performance of 2.4 GHz frequency band has than 868/915 MHz frequency band up to $6{\sim}12$ times.

Sensor Positioning Scheme using Density Probability Models in Non-uniform Wireless Sensor Networks (비 균일 무선 센서 네트워크 환경에서 밀집 확률 모델링을 이용한 센서 위치 인식 기법)

  • Park, Hyuk;Hwang, Dong-Kyo;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.55-66
    • /
    • 2012
  • In wireless sensor networks, a positioning scheme is one of core technologies for sensor applications such as disaster monitoring and environment monitoring. The One of the most positioning scheme, called DV-HOP does not consider non-uniform sensor networks that are actual distributed environments. Therefore, the accuracy of the existing positioning scheme is low in non-uniform network environments. Moreover, because it requires many anchor nodes for high accuracy in non-uniform network environments, it is expensive to construct the network. To overcome this problem, we propose a novel sensor positioning scheme using density probability models in non-uniform wireless sensor networks. The proposed scheme consists of the density probability model using the deployment characteristics of sensor nodes and the distance refinement algorithm for high accuracy. By doing so, the proposed scheme ensures the high accuracy of sensor positioning in non-uniform networks. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme improves about 44% accuracy of sensor positioning over the existing scheme on average even in non-uniform sensor networks.

Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks (무선 센서 네트워크에서 다중 공격 방어를 위한 보안 라우팅 기법)

  • Moon, Soo-Young;Cho, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Sensor Networks are composed of many sensor nodes, which are capable of sensing, computing, and communicating with each other, and one or more sink node(s). Sensor networks collect information of various objects' identification and surrounding environment. Due to the limited resources of sensor nodes, use of wireless channel, and the lack of infrastructure, sensor networks are vulnerable to security threats. Most research of sensor networks have focused on how to detect and counter one type of attack. However, in real sensor networks, it is impractical to predict the attack to occur. Additionally, it is possible for multiple attacks to occur in sensor networks. In this paper, we propose the Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks. The proposed mechanism improves and combines existing security mechanisms, and achieves higher detection rates for single and multiple attacks.

Data-Aware Priority-Based Energy Efficient Top-k Query Processing in Sensor Networks (센서 네트워크를 위한 데이터 인지 우선순위 기반의 에너지 효율적인 Top-k 질의 처리)

  • Yeo, Myung-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.3
    • /
    • pp.189-197
    • /
    • 2009
  • Top-k queries are important to many wireless sensor applications. Conventional Top-k query processing algorithms install a filter at each sensor node and suppress unnecessary sensor updates. However, they have some drawbacks that the sensor nodes consume energy extremely to probe sensor reading or update filters. Especially, it becomes worse, when the variation ratio of top-k result is higher. In this paper, we propose a novel Top-k query processing algorithm for energy-efficiency. First, each sensor determines its priority as the order of data gathering. Next, sensor nodes that have higher priority transmit their sensor readings to the base station until gathering k sensor readings. In order to show the superiority of our query processing algorithm, we simulate the performance with the existing query processing algorithms. As a result, our experimental results show that the network lifetime of our method is prolonged largely over the existing method.

An Efficient Hybrid Lookup Service Exploiting Localized Query Traffic (질의의 지역성을 이용한 효율적인 하이브리드 검색 서비스)

  • Lee, Sang-Hwan;Han, Jae-Il;Kim, Chul-Su;Hwang, Jae-Gak
    • Journal of Information Technology Services
    • /
    • v.8 no.3
    • /
    • pp.171-184
    • /
    • 2009
  • Since the development of the Distributed Hash Tables (DHTs), the distributed lookup services are one of the hot topics in the networking area. The main reason of this popularity is the simplicity of the lookup structure. However, the simple key based search mechanism makes the so called "keyword" based search difficult if not impossible. Thus, the applicability of the DHTs is limited to certain areas. In this paper. we find that DHTs can be used as the ubiquitous sensor network (USN) metadata lookup service across a large number of sensor networks. The popularity of the Ubiquitous Sensor Network has motivated the development of the USN middleware services for the sensor networks. One of the key functionalities of the USN middleware service is the lookup of the USN metadata, by which users get various information about the sensor network such as the type of the sensor networks and/or nodes, the residual of the batteries, the type of the sensor nodes. Traditional distributed hash table based lookup systems are good for one sensor network. However, as the number of sensor network increases, the need to integrate the lookup services of many autonomous sensor networks so that they can provide the users an integrated view of the entire sensor network. In this paper, we provide a hybrid lookup model, in which the autonomous lookup services are combined together and provide seamless services across the boundary of a single lookup services. We show that the hybrid model can provide far better lookup performance than a single lookup system.