• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.029 seconds

Skyline Query Processing Method based on Data Centric Storage (데이터 중심 저장구조에 기반한 스카이라인 질의 처리 기법)

  • Yeo, Myung-Ho;Seong, Dong-Ook;Song, Seok-Il;Yoo, Jae-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.3-7
    • /
    • 2009
  • Data centric storages for sensor networks have been proposed to efficiently process multi-dimensional range queries as well as exact matches. Usually, a sensor network does not process only one type of the query but supports various types of queries such as range queries, exact matches and skyline queries. Therefore, a sensor network based on a data centric storage for range queries and exact matches should process skyline queries efficiently. However, existing algorithms for skyline queries have not considered the features of data centric storages. Some of the data centric storages store similar data in sensor nodes that are placed on geographically similar locations. Consequently, all data are ordered in a sensor network. In this paper, we propose a new skyline query processing algorithm that exploits the above features of data centric storages.

  • PDF

Improved Fast Link-Setup Protocol for high-capacity Wireless Sensor Networks (대용량 무선 센서 네트워크를 위한 개선된 고속링크설정 알고리즘)

  • Kim, Byun-gon;Chung, Kyung-taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2387-2394
    • /
    • 2016
  • It is important to select the most appropriate channel for efficient transmission of massive data in wireless sensor network. In the fixed channel method for wireless sensor node, shortage of frequency may be a major constraint to support a variety of environments. In this paper, the method that seeks common channels between two nodes without common control channels in the existing wireless cognitive radio network is introduced in order to use efficiently the channel of wireless sensor network. The problem of existing method shows the severe degradation of performance that is caused by interference of linkage between selected channels, so that the sequential algorithm is suggested to improve the performance. From the results of computer simulation, the suggested method shows that the link can be set 50% faster than the other methods as the number of links increases because the beacon packet waiting time caused by the interference decreases remarkably.

An Improved Protocol for Establishing A Session Key in Sensor Networks (센서 네트워크의 노드간 세션키 생성을 위한 개선된 프로토콜)

  • Kim Jong-Eun;Cho Kyung-San
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.137-146
    • /
    • 2006
  • Because the traditional public key-based cryptosystems are unsuitable for the sensor node with limited computational and communication capability, a secure communication between two neighbor sensor nodes becomes an important challenging research in sensor network security. Therefore several session key establishment protocols have been proposed for that purpose. In this paper, we analyzed and compared the existing session key establishment protocols based on the criterions of generation strategy and uniqueness of the session key, connectivity, overhead of communication and computation, and vulnerability to attacks. Based on the analysis results, we specify the requirements for the secure and efficient protocols for establishing session keys. Then, we propose an advanced protocol to satisfy the specified requirements and verify the superiority of our protocol over the existing protocols through the detailed analysis.

An Energy-Efficient Routing Protocol based on Static Grid in Wireless Sensor Networks (무선 센서 네트워크에서 정적 그리드 기반의 에너지 효율적 라우팅 프로토콜)

  • Choi, Jae-Min;Mun, Hyung-Jin;Jeong, Yoon-Su;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.791-800
    • /
    • 2010
  • Recently wireless sensor networks as a field of ubiquitous computing technology was in the limelight. To use and collect the necessary information, Sink node mobility is essential. TTDD(Two-Tier Data Dissemination) proposed most common technique associated with Mobile sink node in wireless sensor networks, but issues exist that the use of many control packet falls into the energy efficiency. The technique for solving problems is Cluster-Based Energy-efficient Routing protocol (CBPER). But CBPER does not transmit the data correctly to sink node or source node. In this paper, we propose An Energy-Efficient Routing Protocol based on Static Grid using mobile sink nodes in order to solve the data transmission failure and reduce the energy consumption in Wireless Sensor Networks. We have evaluated it with the NS-2 simulator. Our results show that the proposed protocol saves the energy consumption up to 34% in comparison with CBPER. We also prove that the proposed protocol can transmit more accurate data to the sink de than CBPER.

A Sensor Overlay Network Providing Middleware Services on Wireless Sensor Networks (무선 센서 네트워크에서 미들웨어 서비스를 제공하는 센서 오버레이 네트워크)

  • Kim, Yong-Pyo;Jung, Eui-Hyun;Park, Yong-Jin
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.653-660
    • /
    • 2009
  • A research for middleware of WSN can provide sensor applications with avoiding tight coupling of hardware, ease of development, and abstract data access. However, previous works have some limitations which should install their own middleware onto the all sensor nodes resulting in computational and communication overhead. In order to address it, we proposed a virtual sensor overlay network, called TinyONet-Lite which introduced virtual sensors to model a virtual counterpart of physical sensors. These virtual sensors dynamically grouped into an overlay network, Slice, which provides middleware services. We implemented TinyONet-Lite on mote class hardware with TinyOS. In accordance with experiments and comparison with existing researches, TinyONet-Lite was proved to show advantages of extensibility, dynamic service composition and reducing overhead.

Design of an Efficient Power Manger through the cooperative Dynamic Power Management for Ad hoc Wireless Sensor Networks (Ad hoc 무선 센서네트워크에서의 효율 전력 매니지먼트에 관한 연구)

  • Jeon, Dong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.809-814
    • /
    • 2011
  • The major resource problem in sensor networks is energy efficiency. There are two major access methods to efficiently use energy. The first is to use dynamic power management (DPM). The second is to use energy efficient protocols. In DPM methods, the OS, the power manager, is responsible for managing the proper power state of CPU and each I/O with respect to the events, but the OS is not largely concerned about the internal operation of each network protocols. Also, energy efficient protocols are mainly focused on the power saving operation of the radio PHY. In addition, in wireless sensor network most of tasks are connected to communication. In such a situation, traditional power managers can waste unpredicted power. In this paper, we introduce an efficient power manger that can reduce a lot of unwanted power consumption through cooperative power management (CPM) in communication-related tasks between each units, such as radio, sensing unit, and CPU, for ad hoc wireless sensor nodes.

Implementation of Group Management System with Smart Phone Devices and Wireless Sensor Network (스마트폰 및 무선 센서 네트워크를 기반으로 한 그룹관리 시스템의 구현)

  • Lee, Seung-Joon;Jung, Kyung-Kwon;Lee, Hyun-Kwan;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.378-381
    • /
    • 2011
  • The group management system with Wireless Sensor Network and android application is proposed in this paper. The proposed system was composed of personal devices with sensor nodes of WSN, manager device of android platform, and the web server. The sensor node used by each group member send a data packet to the manager device every 2 seconds. The leader device displays and transmits entire information to the web server. The web server represents these information through web page. Therefore, guardians can assure their group member's safety and security on the web page. The RSSI value of each sensor node converted by computed log-normal path loss model into distance value and displays on the manager device and the web page.

  • PDF

Ubiquitous Healthcare Monitoring System using APG Signals based on Wireless Sensor Network (무선센서네트워크 기반의 가속도 맥파를 이용한 유비쿼터스 헬스케어 모니터링 시스템)

  • Jung, Sang-Joong;Lee, Hoon-Jae;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.813-820
    • /
    • 2009
  • This paper describes the realization of ubiquitous healthcare monitoring system using wearable pulse oximeter based on a wireless sensor network. In order to obtain information of oxygen saturation from a patient, a small size and low power consumption wearable pulse oximeter was designed. Information of oxygen saturation collected by wireless sensor node was transmitted wirelessly to a base-station for storage and display purposes via wireless sensor network. Wireless sensor nodes were programmed by TinyOS application to perform data acquisition and transmission. Lab VIEW server program was designed to monitor information of oxygen saturation and process the measured PPG (photo plethysmogram) signals to APG(Accelerated plethysmogram) signals by appling second order derivatives. PPG signals are simple and cost effective technique to measure blood volume change.

Impact of Sensing Models on Probabilistic Blanket Coverage in Wireless Sensor Network (무선 센서 네트워크에서 Probabilistic Blanket Coverage에 대한 센싱 모델의 영향)

  • Pudasaini, Subodh;Kang, Moon-Soo;Shin, Seok-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.697-705
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.

Communication Event-driven Power Management for Energy Efficient Wireless Sensor Network (에너지 효율적인 무선 센서 네트워크를 위한 통신 이벤트 기반의 전력 관리 방안에 관한 연구)

  • Hwang, Kwang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7B
    • /
    • pp.411-421
    • /
    • 2007
  • It is well known that the biggest problem of wireless sensor networks is power conservation. There have been two major approaches to efficiently use energy in wireless sensor networks. One is to use a dynamic power management scheme and the other is to use energy efficient protocols. In the former, the power manager is responsible for managing the proper power state of CPU and each I/O with respect to the events, but the power manager does not concern about the internal operation of the underlying network protocols. Thus such conventional power managers can waste unpredicted power during communication period. On the other hand, the energy efficient protocols are just focused on the power saving operation of the radio PHY. In this paper, we introduce an energy-efficient power saving mechanism that can significantly reduce unwanted power consumption of wireless sensor nodes through the communication event-driven power management. We show that our scheme improves the energy conservation in the entire network through simulations.