• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.038 seconds

Electric Field Energy Harvesting Powered Wireless Sensors for Smart Grid

  • Chang, Keun-Su;Kang, Sung-Muk;Park, Kyung-Jin;Shin, Seung-Hwan;Kim, Hyeong-Seok;Kim, Ho-Seong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2012
  • In this paper, a new energy harvesting technology using stray electric field of an electric power line is presented. It is found that energy can be harvested and stored in the storage capacitor that is connected to a cylindrical aluminum foil wrapped around a commercial insulated 220 V power line. The average current flowing into 47 ${\mu}F$ storage capacitor is about 4.53 ${\mu}A$ with 60 cm long cylindrical aluminum foil, and it is possible to operate wireless sensor node to transmit RF data every 42 seconds. The harvested average power is about 47 ${\mu}W$ in this case. Since the energy can be harvested without removing insulating sheath, it is believed that the proposed harvesting technology can be applied to power the sensor nodes in wireless ubiquitous sensor network and smart grid system.

Power control protocol for reduction of energy consumption in Wireless Sensor Netoworks (무선 센서 네트워크 환경에서 노드의 에너지 소비 절감을 위한 파워 제어 프로토콜)

  • Han Jung-ahn;Kim Yn-hyng;Kim Byung-gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.28-36
    • /
    • 2005
  • Wireless Sensor Networks are the technology, in which various applications such as surveillance and information gathering are possible in the uncontrollable area of human. And numerous studies are being processed for the application of ubiquitous network environment. One of major issues in sensor network is the research for prolonging the lifetime of nodes through the use of various algorithms, suggested in the mac and routing layer. In this paper, aiming at reducing energy waste, caused by redundant transmission and receipt message, we propose the mac protocol using active signal and analysis performance through simulation.

An Optimal Schedule Algorithm Trade-Off Among Lifetime, Sink Aggregated Information and Sample Cycle for Wireless Sensor Networks

  • Zhang, Jinhuan;Long, Jun;Liu, Anfeng;Zhao, Guihu
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.227-237
    • /
    • 2016
  • Data collection is a key function for wireless sensor networks. There has been numerous data collection scheduling algorithms, but they fail to consider the deep and complex relationship among network lifetime, sink aggregated information and sample cycle for wireless sensor networks. This paper gives the upper bound on the sample period under the given network topology. An optimal schedule algorithm focusing on aggregated information named OSFAI is proposed. In the schedule algorithm, the nodes in hotspots would hold on transmission and accumulate their data before sending them to sink at once. This could realize the dual goals of improving the network lifetime and increasing the amount of information aggregated to sink. We formulate the optimization problem as to achieve trade-off among sample cycle, sink aggregated information and network lifetime by controlling the sample cycle. The results of simulation on the random generated wireless sensor networks show that when choosing the optimized sample cycle, the sink aggregated information quantity can be increased by 30.5%, and the network lifetime can be increased by 27.78%.

Wake-up Algorithm of Wireless Sensor Node Using Geometric Probability (기하학적 확률을 이용한 무선 센서 노드의 웨이크 업 알고리즘 기법)

  • Choi, Sung-Yeol;Kim, Sang-Choon;Kim, Seong Kun;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • Efficient energy management becomes a critical design issue for complex WSN (Wireless Sensor Network). Most of complex WSN employ the sleep mode to reduce the energy dissipation. However, it should cause the reduction of sensing coverage. This paper presents new wake-up algorithm for reducing energy consumption in complex WSN. The proposed wake-up algorithm is devised using geometric probability. It determined which node will be waked-up among the nodes having overlapped sensing coverage. The only one sensor node will be waked-up and it is ready to sense the event occurred uniformly. The simulation results show that the lifetime is increased by 15% and the sensing coverage is increased by 20% compared to the other scheduling methods. Consequently, the proposed wake-up algorithm can eliminate the power dissipation in the overlapped sensing coverage. Thus, it can be applicable for the various WSN suffering from the limited power supply.

Packet Traffic Management in Wearable Health Shirt by Irregular Activity Analysis on Sensor Node

  • Koay, Su-Lin;Jung, Sang-Joong;Shin, Heung-Sub;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.233-236
    • /
    • 2010
  • This paper describes the packet traffic management of the Ubiquitous Healthcare System. In this system, ECG signal and accelerometer signal is transmitted from a wearable health shirt (WHS) to the base station. However, with the increment of users in this system, traffic over-load issue occurs. The main aim of this paper is to reduce the traffic over-load issue between sensor nodes by only transmitting the required signals to the base station when irregular activities are observed. In order to achieve this, in-network processing is adapted where the process of observation is conducted inside the sensor node of WHS. Results shows that irregular activities such as fall can be detected on real-time inside the sensor node and thus resolves traffic over-load issue.

  • PDF

Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents with Dynamic Itineraries

  • Gupta, Govind P.;Misra, Manoj;Garg, Kumkum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.123-144
    • /
    • 2014
  • Wireless sensor networks are generally deployed for specific applications to accomplish certain objectives over a period of time. To fulfill these objectives, it is crucial that the sensor network continues to function for a long time, even if some of its nodes become faulty. Energy efficiency and fault tolerance are undoubtedly the most crucial requirements for the design of an information extraction protocol for any sensor network application. However, most existing software agent based information extraction protocols are incapable of satisfying these requirements because of static agent itineraries and large agent sizes. This paper proposes an Information Extraction protocol based on Multiple software Agents with Dynamic Itineraries (IEMADI), where multiple software agents are dispatched in parallel to perform tasks based on the query assigned to them. IEMADI decides the itinerary for an agent dynamically at each hop using local information. Through mathematical analysis and simulation, we compare the performance of IEMADI with a well known static itinerary based protocol with respect to energy consumption and response time. The results show that IEMADI provides better performance than the static itinerary based protocols.

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

Development of Cooperative Object Tracking Algorithm Under the Sensor Network Environment (센서네트워크 상황하의 협력적 물체 추적 알고리즘 개발)

  • Kim, Sung-Ho;Kim, Si-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.710-715
    • /
    • 2006
  • With recent advances in device fabrication technology, economical deployment of large scale sensor networks, a design of pervasive monitoring and control system has been made possible. In this paper, we present a new algorithm for one of the most likely applications for sensor networks; tracking moving targets. The proposed algorithm uses a cooperations between the sensor nodes which detect moving objects. Therefore, the proposed scheme is robust against prediction failures which may result in temporary loss of the target. Using simulations we show that tile proposed moving object tracking algorithm is capable of accurately tracking targets with random movement patterns.

Adjusting Cluster Size for Alleviating Network Lifetime in Wireless Sensor Network (무선 센서네트워크에서 네트워크 수명 연장을 위한 클러스터 크기 조정 알고리즘)

  • Kwak, Tae-Kil;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1201-1206
    • /
    • 2007
  • In this paper, we propose an algorithm that improve network lifetime by adjusting cluster size according to location information of sensor node in wireless sensor network (WSN) using clustering algorithm. The collected sensing information by sensor nodes in each cluster are transferred to sink node using inter-cluster communications method. Cluster head (CH) that located nearby sink node spend much more energy than those of far from sink node, because nearer CH forwards more data, so network lifetime has a tendency to decrease. Proposed algorithm minimizes energy consumption in adjacent cluster to sink node by decreasing cluster size, and improve CH lifetime by distributing transmission paths. As a result of mathematical analysis, the proposed algorithm shows longer network lifetime in WSN.

Wireless Sensor Networks have Applied the Routing History Cache Routing Algorithm (무선센서 네트워크에서 Routing History Cache를 이용한 라우팅 알고리즘)

  • Lee, Doo-Wan;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1018-1021
    • /
    • 2009
  • Wireless Sensor Network collects a data from the specific area and the control is composed of small sensor nodes. Like this sensors to after that is established at the beginning are operated with the battery, the operational duration until several years must be continued from several months and will be able to apply the resources which is restricted in efficiently there must be. In this paper RHC (rounting history cache) applies in Directed Diffusion which apply a data central concept a reliability and an efficiency in data transfer course set. RHC algorithms which proposes each sensor node updated RHC of oneself with periodic and because storing the optimization course the course and, every event occurrence hour they reset the energy is wasted the fact that a reliability with minimization of duplication message improved.

  • PDF