References
- Cian O' Mathuna, Terence O'Donnell, Rafael V. Martinez-Catala, James Rohan and Brendan O'Flynn, "Energy scavenging for long-term deployable wireless sensor networks", Talanta, vol. 75, issue. 3, pp.613-623, May. 2008. https://doi.org/10.1016/j.talanta.2007.12.021
- Joseph A. Paradiso and Thad Starner, "Energy Scavenging for Mobile and Wireless Electronics", IEEE Pervasive Computing, vol. 4, issue. 1, pp.18-27, Jan/March. 2005. https://doi.org/10.1109/MPRV.2005.9
- Kurt Roth and James Brodrick, "Energy Harvesting For Wireless Sensors", ASHRAE Journal, vol. 50, issue. 5, pp.84-90, May 2008.
- Rohit Moghe, Yi Yang, Frank Lambert and Deepak Divan, "A Scoping Study of Electric and Magnetic Field Energy Harvesting for Wireless Sensor Networks in Power System Applications", IEEE Energy Conversion Congress and Exposition, pp.3550-3557, 20-24. Sept. 2009. https://doi.org/10.1109/ECCE.2009.5316052
- H.S. Kim, S.-M. Kang, K.-J. Park, C.-W. Baek and J.-S. Park, "Power management circuit for wireless ubiquitous sensor nodes powered by scavenged energy", Electronics Letters, vol. 45, issue. 7, pp.373-374, March. 2009. https://doi.org/10.1049/el.2009.2477
- Nathan S. Shenck and Joseph A. Paradiso, "Energy Scavenging with Shoe-Mounted Piezoelectrics", IEEE Micro, vol. 21, issue. 3, pp.30-42, May/Jun. 2001. https://doi.org/10.1109/40.928763
Cited by
- Electric-Field Energy Harvesting From Lighting Elements for Battery-Less Internet of Things vol.5, 2017, https://doi.org/10.1109/ACCESS.2017.2690968
- Piezoelectric and electromagnetic hybrid energy harvester for powering wireless sensor nodes in smart grid vol.29, pp.10, 2015, https://doi.org/10.1007/s12206-015-0928-x
- An Approach for Security Problems in Visual Surveillance Systems by Combining Multiple Sensors and Obstacle Detection vol.10, pp.3, 2015, https://doi.org/10.5370/JEET.2015.10.3.1284
- Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control vol.6, pp.4, 2017, https://doi.org/10.3390/electronics6010005
- Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.095
- A Comprehensive WSN-Based Approach to Efficiently Manage a Smart Grid vol.14, pp.12, 2014, https://doi.org/10.3390/s141018748
- Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature vol.8, pp.3, 2012, https://doi.org/10.1007/s13391-012-2002-5
- Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3 Ceramics vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741865
- Electrodynamic energy harvester for electrical transformer’s temperature monitoring system vol.40, pp.7, 2015, https://doi.org/10.1007/s12046-015-0429-8
- Powerless Insulated DC–AC Voltage Measurement by Photovoltaic Energy Harvesting from a P–N Collector–Base Junction in an Opto-Insulator vol.47, pp.1, 2014, https://doi.org/10.1177/0020294013517450
- Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2072-4
- The Role of Advanced Sensing in Smart Cities vol.13, pp.12, 2012, https://doi.org/10.3390/s130100393
- Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2160-5
- Smart Cities: A Survey on Data Management, Security, and Enabling Technologies vol.19, pp.4, 2017, https://doi.org/10.1109/COMST.2017.2736886
- Electric-Field Energy Harvesting in Wireless Networks vol.24, pp.2, 2017, https://doi.org/10.1109/MWC.2017.1600215
- Magnetic Field Energy Harvesting Under Overhead Power Lines vol.30, pp.11, 2015, https://doi.org/10.1109/TPEL.2015.2436702
- Development of Gas Safety Management System for Smart-Home Services vol.9, pp.10, 2013, https://doi.org/10.1155/2013/591027
- Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications vol.2016, 2016, https://doi.org/10.1155/2016/3934289
- A Self-Powered 3.26--m Wireless Temperature Sensor Node for Power Grid Monitoring vol.65, pp.11, 2018, https://doi.org/10.1109/TIE.2018.2811360