• Title/Summary/Keyword: Sensor life time

Search Result 379, Processing Time 0.03 seconds

State recognition of fine blanking stamping dies through vibration signal machine learning (진동신호 기계학습을 통한 프레스 금형 상태 인지)

  • Seok-Kwan Hong;Eui-Chul Jeong;Sung-Hee Lee;Ok-Rae Kim;Jong-Deok Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2022
  • Fine blanking is a press processing technology that can process most of the product thickness into a smooth surface with a single stroke. In this fine blanking process, shear is an essential step. The punches and dies used in the shear are subjected to impacts of tens to hundreds of gravitational accelerations, depending on the type and thickness of the material. Therefore, among the components of the fine blanking mold (dies), punches and dies are the parts with the shortest lifespan. In the actual production site, various types of tool damage occur such as wear of the tool as well as sudden punch breakage. In this study, machine learning algorithms were used to predict these problems in advance. The dataset used in this paper consisted of the signal of the vibration sensor installed in the tool and the measured burr size (tool wear). Various features were extracted so that artificial intelligence can learn effectively from signals. It was trained with 5 features with excellent distinguishing performance, and the SVM algorithm performance was the best among 33 learning models. As a result of the research, the vibration signal at the time of imminent tool replacement was matched with an accuracy of more than 85%. It is expected that the results of this research will solve problems such as tool damage due to accidental punch breakage at the production site, and increase in maintenance costs due to prediction errors in punch exchange cycles due to wear.

Implementation of Prevention and Eradication System for Harmful Wild Animals Based on YOLO (YOLO에 기반한 유해 야생동물 피해방지 및 퇴치 시스템 구현)

  • Min-Uk Chae;Choong-Ho Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.137-142
    • /
    • 2022
  • Every year, the number of wild animals appearing in human settlements increases, resulting in increased damage to property and human life. In particular, the damage is more severe when wild animals appear on highways or farmhouses. To solve this problem, ecological pathways and guide fences are being installed on highways. In addition, in order to solve the problem in farms, horn repelling using sensors, installing a net, and repelling by smell of excrement are being used. However, these methods are expensive and their effectiveness is not high. In this paper, we used YOLO (You Only Look Once), an AI-based image analysis method, to analyze harmful animals in real time to reduce malfunctions, and high-brightness LEDs and ultrasonic frequency speakers were used as extermination devices. The speaker outputs an audible frequency that only animals can hear, increasing the efficiency to only exterminate wild animals. The proposed system is designed using a general-purpose board so that it can be installed economically, and the detection performance is higher than that of the devices using the existing sensor.

A Life time improvement Method of SVM application LEACH protocol in Wireless Sensor Networks (SVM을 적용한 LEACH 프로토콜 기반 무선센서네트워크의 수명 개선 방법)

  • Pyo, Se Jun;Jo, Yong-Ok;Ok, Tae-Seong;Bang, Jong-Dae;Keshav, Tushar;Lee, Seong-Ho;Ryu, Hui-Eun;Lee, Yeonwoo;Bae, Jinsoo;Lee, Seong-Ro
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.606-608
    • /
    • 2011
  • 무선 센서 네트워크는 특정지역에 센서 노드를 설치하여 주변 정보 또는 특정 목적의 데이터를 수집하고, 그 정보를 수집하는 싱크(Sink)로 구성되어 있다. 무선 센서 네트워크의 수명은 망을 구성하는 센서 노드의 베터리 소비에 따라 수명이 결정 되고 하나의 노드가 죽기 시작하면서부터 급격하게 센서 노드의 베터리 소비가 커져 빠르게 죽는다. 무선 센서 네트워크를 구성하는 센서노드는 라우팅, 센싱을 수행하기 때문에 베터리 소비에 많은 부담을 가지고 있다. 본 논문은 무선 센서 네트워크의 대표적 클러스터링 기반 라우팅 기법인 LEACH(Low - Energy Adaptive Clustering Hierarchy)프로토콜에 SVM(Support Vector Machine)을 적용하여 센서노드의 균형적인 베터리 소비로 망을 효율적으로 관리하고 망의 수명을 개선 할 수 있는 방법을 제안 한다. 이러한 센서 노드의 균형적인 베터리 소비로 무선센서 네트워크의 수명을 개선 한다. 실험결과 기존의 LEACH 프로토콜보다 우수한 성능을 보인다.

A Distributed Activity Recognition Algorithm based on the Hidden Markov Model for u-Lifecare Applications (u-라이프케어를 위한 HMM 기반의 분산 행위 인지 알고리즘)

  • Kim, Hong-Sop;Yim, Geo-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.157-165
    • /
    • 2009
  • In this paper, we propose a distributed model that recognize ADLs of human can be occurred in daily living places. We collect and analyze user's environmental, location or activity information by simple sensor attached home devices or utensils. Based on these information, we provide a lifecare services by inferring the user's life pattern and health condition. But in order to provide a lifecare services well-refined activity recognition data are required and without enough inferred information it is very hard to build an ADL activity recognition model for high-level situation awareness. The sequence that generated by sensors are very helpful to infer the activities so we utilize the sequence to analyze an activity pattern and propose a distributed linear time inference algorithm. This algorithm is appropriate to recognize activities in small area like home, office or hospital. For performance evaluation, we test with an open data from MIT Media Lab and the recognition result shows over 75% accuracy.

Determination and evaluation of dynamic properties for structures using UAV-based video and computer vision system

  • Rithy Prak;Ji Ho Park;Sanggi Jeong;Arum Jang;Min Jae Park;Thomas H.-K. Kang;Young K. Ju
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.457-468
    • /
    • 2023
  • Buildings, bridges, and dams are examples of civil infrastructure that play an important role in public life. These structures are prone to structural variations over time as a result of external forces that might disrupt the operation of the structures, cause structural integrity issues, and raise safety concerns for the occupants. Therefore, monitoring the state of a structure, also known as structural health monitoring (SHM), is essential. Owing to the emergence of the fourth industrial revolution, next-generation sensors, such as wireless sensors, UAVs, and video cameras, have recently been utilized to improve the quality and efficiency of building forensics. This study presents a method that uses a target-based system to estimate the dynamic displacement and its corresponding dynamic properties of structures using UAV-based video. A laboratory experiment was performed to verify the tracking technique using a shaking table to excite an SDOF specimen and comparing the results between a laser distance sensor, accelerometer, and fixed camera. Then a field test was conducted to validate the proposed framework. One target marker is placed on the specimen, and another marker is attached to the ground, which serves as a stationary reference to account for the undesired UAV movement. The results from the UAV and stationary camera displayed a root mean square (RMS) error of 2.02% for the displacement, and after post-processing the displacement data using an OMA method, the identified natural frequency and damping ratio showed significant accuracy and similarities. The findings illustrate the capabilities and reliabilities of the methodology using UAV to evaluate the dynamic properties of structures.

THE DEVELOPMENT OF INDWELLING WIRELESS PH TELEMETRY OF INTRAORAL ACIDITY (구강 내 산도의 생체 내 측정을 위한 wireless pH telemetry의 개발)

  • Kim, Hyung-Jun;Kim, Jae-Moon;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • The purpose of this study was to develop the wireless pH telemetry lasting longer than 24 hours in the mouth to overcome the limits of conventional wire telemetry previously used for salivary and plaque pH measurement, and to assess its effectiveness. We developed a wireless pH telemeter which can measure and store the pH profile data during more than 24 hours. It was composed of intraoral part; pH sensor of antimony electrode, battery and microprocessor for data storage, and extraoral part; control/data receiver and data analyzing software which was newly made for this device. After inspecting wireless electrode for accurate measurement, it was attached to the removable intraoral appliance and delivered to the volunteer who was told to wear except brushing time, retrieved after 24 hours and finally the pH profile data was extracted and analyzed. When compared with conventional wire telemetry, this device showed similar results and induced less discomfort to examinees. The data showed pH changes at same time when examinees ate various scheduled foods and beverages. With this method it became possible to accurately measure pH changes within mouth for long time in accordance with individual's lifestyle, definitely reducing the discomfort inflicted to the examinees' life.

  • PDF

Smartphone-based Wavelength Control LED Lighting System according to the Sleep-Wake Cycle of Occupants (재실자의 수면-각성 주기에 따른 스마트폰 기반 파장제어 LED 조명시스템)

  • Kim, Yang-Soo;Kwon, Sook-Youn;Hwang, Jun;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Melatonin hormone involved in human's circadian rhythm adjustment sensitively responds to light's specific short wavelength ratio. A shift worker's circadian rhythm disturbance and sleep disorder are caused by the existing lighting conditions, whose short wavelength ratio is fixed. The life pattern of a shift worker changes irregularly because of irregular working hours and the same lighting environment; thus, his/her concentration is reduced. For such a reason, negative effects ensue to the detriment of healthy everyday life, including a high risk of accidents or having unsound sleep after leaving work. A smartphone-based wavelength control LED lighting system that targets shift workers and that can easily measure and control lighting suitable for wake-sleep cycle, according to working hours and closing hours, is proposed in this paper. First, after the light characteristics of LED lighting that changes depending on light control ratio are measured through the color sensor installed on the smartphone and the externally-linked Mini-Spectrometer, they are stored in the database. Based on the stored optical characteristics data, the measurement module and light control module are implemented. Lighting is offered using a control ratio having the maximum rate of short wavelength in consideration of the target illuminance, classified according to work type by identifying working hours as time when waking is required for shift workers. After a shift work leaves work, the amount of lighting is varied, using a control ratio having a minimum short wavelength rate so that a shift worker can enter the sleep state naturally.

Development of Android-Based Photogrammetric Unmanned Aerial Vehicle System (안드로이드 기반 무인항공 사진측량 시스템 개발)

  • Park, Jinwoo;Shin, Dongyoon;Choi, Chuluong;Jeong, Hohyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.215-226
    • /
    • 2015
  • Normally, aero photography using UAV uses about 430 MHz bandwidth radio frequency (RF) modem and navigates and remotely controls through the connection between UAV and ground control system. When using the exhausting method, it has communication range of 1-2 km with frequent cross line and since wireless communication sends information using radio wave as a carrier, it has 10 mW of signal strength limitation which gave restraints on life my distance communication. The purpose of research is to use communication technologies such as long-term evolution (LTE) of smart camera, Bluetooth, Wi-Fi and other communication modules and cameras that can transfer data to design and develop automatic shooting system that acquires images to UAV at the necessary locations. We conclude that the android based UAV filming and communication module system can not only film images with just one smart camera but also connects UAV system and ground control system together and also able to obtain real-time 3D location information and 3D position information using UAV system, GPS, a gyroscope, an accelerometer, and magnetic measuring sensor which will allow us to use real-time position of the UAV and correction work through aerial triangulation.

Flood Disaster Prediction and Prevention through Hybrid BigData Analysis (하이브리드 빅데이터 분석을 통한 홍수 재해 예측 및 예방)

  • Ki-Yeol Eom;Jai-Hyun Lee
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.99-109
    • /
    • 2023
  • Recently, not only in Korea but also around the world, we have been experiencing constant disasters such as typhoons, wildfires, and heavy rains. The property damage caused by typhoons and heavy rain in South Korea alone has exceeded 1 trillion won. These disasters have resulted in significant loss of life and property damage, and the recovery process will also take a considerable amount of time. In addition, the government's contingency funds are insufficient for the current situation. To prevent and effectively respond to these issues, it is necessary to collect and analyze accurate data in real-time. However, delays and data loss can occur depending on the environment where the sensors are located, the status of the communication network, and the receiving servers. In this paper, we propose a two-stage hybrid situation analysis and prediction algorithm that can accurately analyze even in such communication network conditions. In the first step, data on river and stream levels are collected, filtered, and refined from diverse sensors of different types and stored in a bigdata. An AI rule-based inference algorithm is applied to analyze the crisis alert levels. If the rainfall exceeds a certain threshold, but it remains below the desired level of interest, the second step of deep learning image analysis is performed to determine the final crisis alert level.

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.