• Title/Summary/Keyword: Sensor life time

Search Result 379, Processing Time 0.029 seconds

A Resource Adaptive Data Dissemination Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 자원 적응형 데이터 확산프로토콜)

  • Kim, Hyun-Tae;Choi, Nak-Sun;Jung, Kyu-Su;Jeon, Yeong-Bae;Ra, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2091-2098
    • /
    • 2006
  • In this paper, it proposes a protocol of resource adaptive data dissemination for sensor nodes in a wireless sensor network. In general, each sensor node used in a wireless sensor network delivers the required information to the final destination by conducting cooperative works such as sensing, processing, and communicating each other using the battery power of a independent sensor node. So, a protocol used for transferring the acquired information to users through the wireless sensor network can minimize the power consumption of energy resource given to a sensor node. Especially, it is very important to minimize the total amount of power consumption with a method for handling the problems on implosion. data delivery overlapping, and excessive message transfer caused by message broadcasting. In this paper, for the maintaining of the shortest path between sensor nodes, maximizing of the life time of a sensor node and minimizing of communication cost, it presents a method for selecting the representative transfer node for an event arising area based on the negotiation scheme and maintaining optimal transfer path using hop and energy information. Finally, for the performance evaluation, we compare the proposed protocol to existing directed diffusion and SPIN protocol. And, with the simulation results, we show that the proposed protocol enhances the performance on the power consumption rate when the number of overall sensor nodes in a sensor network or neighbor sensor nodes in an event area are increased and on the number of messages disseminated from a sensor node.

Automatic Bee-Counting System with Dual Infrared Sensor based on ICT (ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템)

  • Son, Jae Deok;Lim, Sooho;Kim, Dong-In;Han, Giyoun;Ilyasov, Rustem;Yunusbaev, Ural;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • Honey bees are a vital part of the food chain as the most important pollinators for a broad palette of crops and wild plants. The climate change and colony collapse disorder (CCD) phenomenon make it challenging to develop ICT solutions to predict changes in beehive and alert about potential threats. In this paper, we report the test results of the bee-counting system which stands out against the previous analogues due to its comprehensive components including an improved dual infrared sensor to detect honey bees entering and leaving the hive, environmental sensors that measure ambient and interior, a wireless network with the bluetooth low energy (BLE) to transmit the sensing data in real time to the gateway, and a cloud which accumulate and analyze data. To assess the system accuracy, 3 persons manually counted the outgoing and incoming honey bees using the video record of 360-minute length. The difference between automatic and manual measurements for outgoing and incoming scores were 3.98% and 4.43% respectively. These differences are relatively lower than previous analogues, which inspires a vision that the tested system is a good candidate to use in precise apicultural industry, scientific research and education.

The Algorithm for an Energy-efficient Particle Sensor Applied LEACH Routing Protocol in Wireless Sensor Networks (무선센서네트워크에서 LEACH 라우팅 프로토콜을 적용한 파티클 센서의 에너지 효율적인 알고리즘)

  • Hong, Sung-Hwa;Kim, Hoon-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • The sensor nodes that form a wireless sensor network must perform both routing and sensing roles, since each sensor node always has a regular energy drain. The majority of sensors being used in wireless sensor networks are either unmanned or operated in environments that make them difficult for humans to approach. Furthermore, since many wireless sensor networks contain large numbers of sensors, thus requiring the sensor nodes to be small in size and cheap in price, the amount of power that can be supplied to the nodes and their data processing capacity are both limited. In this paper, we proposes the WSN(Wireless Sensor Network) algorithm which is applied sensor node that has low power consumption and efficiency measurement. Moreover, the efficiency routing protocol is proposed in this paper. The proposed algorithm reduces power consumption of sensor node data communication. It has not researched in LEACH(Low-Energy Adaptive Clustering Hierarchy) routing protocol. As controlling the active/sleep mode based on the measured data by sensor node, the energy consumption is able to be managed. In the event, the data is transferred to the local cluster head already set. The other side, this algorithm send the data as dependent on the information such as initial and present energy, and the number of rounds that are transformed into cluster header and then transferred. In this situation, the assignment of each node to cluster head evenly is very important. We selected cluster head efficiently and uniformly distributed the energy to each cluster node through the proposed algorithm. Consequently, this caused the extension of the WSN life time.

Intelligent Healthcare Service Provisioning Using Ontology with Low-Level Sensory Data

  • Khattak, Asad Masood;Pervez, Zeeshan;Lee, Sung-Young;Lee, Young-Koo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2016-2034
    • /
    • 2011
  • Ubiquitous Healthcare (u-Healthcare) is the intelligent delivery of healthcare services to users anytime and anywhere. To provide robust healthcare services, recognition of patient daily life activities is required. Context information in combination with user real-time daily life activities can help in the provision of more personalized services, service suggestions, and changes in system behavior based on user profile for better healthcare services. In this paper, we focus on the intelligent manipulation of activities using the Context-aware Activity Manipulation Engine (CAME) core of the Human Activity Recognition Engine (HARE). The activities are recognized using video-based, wearable sensor-based, and location-based activity recognition engines. An ontology-based activity fusion with subject profile information for personalized system response is achieved. CAME receives real-time low level activities and infers higher level activities, situation analysis, personalized service suggestions, and makes appropriate decisions. A two-phase filtering technique is applied for intelligent processing of information (represented in ontology) and making appropriate decisions based on rules (incorporating expert knowledge). The experimental results for intelligent processing of activity information showed relatively better accuracy. Moreover, CAME is extended with activity filters and T-Box inference that resulted in better accuracy and response time in comparison to initial results of CAME.

Patch Type Body Temperature Measurement System for Ubiquitous Healthcare (U-헬스케어를 위한 패치형 체온 측정 시스템)

  • Kim, Hyun-Joong;Yang, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1628-1634
    • /
    • 2011
  • With the advancement of ubiquitous computing technology, u-Healthcare (i.e. ubiquitous health care), is regarded as a key application for information society, which provides health management service at anytime in anywhere. To implement U-Healthcare system, it is essential to monitor stable biological information in daily life. In this paper, we proposed a small size, light weight, patch type real time temperature monitoring system based on wireless sensor network (WSN) technology to monitor patients' body temperature without any inconvenience of activity.

Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction

  • Kim, Hyeok Jung;Kim, Yeji;Park, Su Jung;Kwon, Chanho;Noh, Hyeran
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.326-331
    • /
    • 2018
  • Contamination by pesticides is an everincreasing problem associated with fields of environmental management and healthcare. Accordingly, appropriate treatments are in demand. Pesticide detection methods have been researched extensively, aimed at making the detection convenient, fast, cost-effective, and easy to use. Among the various detecting strategies, paper-based assay is potent for real-time pesticide sensing due to its unique advantages including disposability, light weight, and low cost. In this study, a paper-based sensor for chlorpyrifos, an organophosphate pesticide, has been developed by layering three sheets of patterned plates. In colorimetric quantification of pesticides, the blue color produced by the interaction between acetylcholinesterase and indoxyl acetate is inhibited by the pesticide molecules present in the sample solutions. With the optimized paper-based sensor, the pesticide is sensitively detected (limit of detection =8.60 ppm) within 5min. Furthermore, the shelf life of the device is enhanced to 14 days after from the fabrication, by treating trehalose solution onto the deposited reagents. We expect the paper-based device to be utilized as a first-screening analytic device for water quality monitoring and food analysis.

A study on the Remote Control System for Measuring Gradient of temporary earth retaining structure (흙막이 가시설 구조물의 무선원격계측관리시스템에 관한 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Kim, Sang-Won;Seo, Yong-Chil;Shin, Chan-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.49-52
    • /
    • 2011
  • This study concerned with the retention structures or inverted temporary building for displacement measurement in the underground soil after drilling a vertical tilt sensor attached to the vertical distance required to maintain a real-time measurement and management in order to install the wireless measuring devices installed in the field through remote control and management program for the safety of retaining structures temporary building be found on the internet in real time temporary building the retention is to develop a safety management system. And based on this technology to monitor the future status of the various structures possible to add a variety of sensors and Life Cycle Prediction of the structure and needs to evolve into intelligent systems and wireless networks using wireless communications infrastructure systems based on expanding domestic market penetration by developing instrumentation pioneer in overseas markets as well as the activation can also be judged.

  • PDF

Preclinical study of a novel ingestible bleeding sensor for upper gastrointestinal bleeding

  • Kimberly F. Schuster;Christopher C. Thompson;Marvin Ryou
    • Clinical Endoscopy
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • Background/Aims: Upper gastrointestinal bleeding (UGIB) is a life-threatening condition that necessitates early identification and intervention and is associated with substantial morbidity, mortality, and socioeconomic burden. However, several diagnostic challenges remain regarding risk stratification and the optimal timing of endoscopy. The PillSense System is a noninvasive device developed to detect blood in patients with UGIB in real time. This study aimed to assess the safety and performance characteristics of PillSense using a simulated bleeding model. Methods: A preclinical study was performed using an in vivo porcine model (14 animals). Fourteen PillSense capsules were endoscopically placed in the stomach and blood was injected into the stomach to simulate bleeding. The safety and sensitivity of blood detection and pill excretion were also investigated. Results: All the sensors successfully detected the presence or absence of blood. The minimum threshold was 9% blood concentration, with additional detection of increasing concentrations of up to 22.5% blood. All the sensors passed naturally through the gastrointestinal tract. Conclusions: This study demonstrated the ability of the PillSense System sensor to detect UGIB across a wide range of blood concentrations. This ingestible device detects UGIB in real time and has the potential to be an effective tool to supplement the current standard of care. These favorable results will be further investigated in future clinical studies.

Characteristics of Shelf-life of Soybean Curd by Electronic Noses - Using PCA and cluster analysis (전자코를 이용한 두부의 저장특성 분석 주성분 분석과 군집분석을 이용하여 -)

  • 김성민;노봉수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.241-248
    • /
    • 2002
  • An electronic noses system including six metal oxide sensors was used to predict the characteristics of shelf-life of soybean curd. Soybean curd was stored at two different temperatures defined as low temperature(5$\^{C}$) and high temperature(25$\^{C}$). Resistance changes of the sensors were measured 13 times for 19 days at low temperature and 19 times for 120 hours at high temperature. Three different analytical methods such as graphical analysis(GA), principal component analysis(PCA), and cluster analysis(CA) were used to analyze sensors outputs. The ratio of resistance was decreased according to increasement of shelf-life. Using PCA it was possible to predict freshness and shelf-life time of soybean curds. Also, using CA it was possible to simplify an electronic nose system. Electronic nose system could be an efficient method to predict shelf-life and to evaluate quality in foods.

An Energy Efficient Routing Scheme for Cluster-based WSNs (클러스터 기반 WSN에서 에너지 효율적인 라우팅 기법)

  • Song, Chang-Young;Kim, Seong-Ihl;Won, Young-Jin;Chung, Yong-Jin
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.41-46
    • /
    • 2010
  • WSN, or Wireless Sensor Network, consists of a multitude of inexpensive micro-sensors. Because the batteries in sensor nodes can not be replaced once they are deployed, the life of a WSN is absolutely determined by the batteries. So, energy efficiency of a network is a critical factor for long-life operation. LEACH protocol which divides WSN into two groups is a typical routing protocol based on the clustering scheme for the efficient use of limited energy. It is composed of round units which are separated into set-up and steady state. In this paper we propose a power saving scheme to minimize set-up phase itself and to involve a data comparison algorithm. We evaluate the performance of the proposed scheme in comparison with original LEACH protocol. Simulation results validate our scheme has better performance in terms of the number of alive nodes as time evolves and average energy dissipated.