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Abstract 
 

Ubiquitous Healthcare (u-Healthcare) is the intelligent delivery of healthcare services to users 

anytime and anywhere. To provide robust healthcare services, recognition of patient daily life 

activities is required. Context information in combination with user real-time daily life 

activities can help in the provision of more personalized services, service suggestions, and 

changes in system behavior based on user profile for better healthcare services. In this paper, 

we focus on the intelligent manipulation of activities using the Context-aware Activity 

Manipulation Engine (CAME) core of the Human Activity Recognition Engine (HARE). The 

activities are recognized using video-based, wearable sensor-based, and location-based 

activity recognition engines. An ontology-based activity fusion with subject profile 

information for personalized system response is achieved. CAME receives real-time low level 

activities and infers higher level activities, situation analysis, personalized service suggestions, 

and makes appropriate decisions. A two-phase filtering technique is applied for intelligent 

processing of information (represented in ontology) and making appropriate decisions based 

on rules (incorporating expert knowledge). The experimental results for intelligent processing 

of activity information showed relatively better accuracy. Moreover, CAME is extended with 

activity filters and T-Box inference that resulted in better accuracy and response time in 

comparison to initial results of CAME. 
 

 

Keywords: Ubiquitous healthcare, activity recognition, ontology, inference engine, ontology 

matching 
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1. Introduction 

As the human lifespan increases, people are becoming more interested in living a healthy life, 

which results in high-cost healthcare systems and services. Maintaining good quality and 

widely availabile healthcare services at a minimal cost is challenging [1]. Home healthcare 

systems are becoming a more important form of healthcare service delivery. The management, 

maintenance, and coordination of healthcare services, educating users, and empowerment of 

individuals to manage their own health are the main focus. To support this, a powerful, flexible, 

and cost-effective infrastructure is required for healthcare services that can fulfill the vision of 

ubiquitous healthcare (u-healthcare). Cloud Computing can potentially provide a huge cost 

savings, flexiblility, high-throughput, and ease of use for different services [2] as well as for 

healthcare services. For this reason, we have developed an architecture, called Secured 

Wireless Sensor Network (WSN)-integrated Cloud Computing for u-LifeCare (SC
3
) [3]. 

Different wireless sensors are deployed that collect real-time data that is transmitted to a Cloud 

Server through a Cloud Gateway. Based on this real-time data collected by different sensors, 

SC
3
 provides real-time home care and safety monitoring services, an information sharing and 

exchange facility, emergency connection services, and patient monitoring and care services.  

One of the main components of SC
3
 is the Human Activity Recognition Engine (HARE) [1] 

(see Fig. 1). This engine is necessary to provide improved daily medical care and real-time 

reaction to medical emergencies, and identifying patient activities (i.e., Activity Recognition 

(AR)) is a prerequisite. Low level activities are defined as simple motions or actions detected 

by the sensing device that are very general and unclear in meaning such as hand movement. 

High level activities are the linkage of low level activities in a sequence with reference to 

context to make it more understandable. For example, in the process of making tea, picking up  

the cup, boiling water, using sugar, and using a spoon are all low level activities and are 

unclear when interpreted separately. However, when these activities are sequenced together 

and are used in context with the kitchen location, then they comprise “making tea” as a high 

level activity.   

The existing systems are based on a simple condition and action model [4], not using 

context information including time, location, and user profile. In some cases, the existing 

systems use imperfect low level context information [5], which makes the system results 

unpredictable. Their focus is more on environmental sensors (e.g., smoke detector, infrared 

control, and GPRS modem) rather than on real-time human activity. Traditional systems are 

moving from location or time based reminder systems toward context-aware activity 

recognition. However, humans rely on several modalities including the five classical senses 

and other senses such as thermoception (temperature) and equilibrioception (balance and 

acceleration) together with context information such as location, and time for everyday tasks. 

Currently, to the best of our knowledge, there is no systematic way to integrate 

multi-modalities such as profile information, vision with motion, environment, location, and 

time to infer human intentions, whereas the traditional systems are based on simple activity 

with a condition and action model. Our focus in this paper is on CAME [6] as a component of 

our proposed HARE [1] (see Fig. 1) that is beyond the limitations of traditional systems. We 

propose the integration of all the activities detected using different types of sensors together 

along with context and profile information of the subject. We model the activities in domain 

ontology within the explicit context of the activity and execution pattern. In addition, we apply 

semantic reasoning to infer high level activities (user intention for performed activity) and use 
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it for decision making. This will help in enhancing capabilities of healthcare systems to 

facilitate more personalized recommendations and decision making, and it has tremendous 

value for intelligent/efficient service provisioning. 

For the CAME implementation, we use different sources of information to avoid the 

possibility of missing information or imperfect context information [5]. For context 

representation and profile information, we use an ontology and have developed a semantic 

structure for information representation. Ontology is formally defined as an explicit and 

formal specification of a shared conceptualization [7].   

Sensors are deployed to collect real-time data about a person’s activities and environmental 

information. Then with the use of an ontology (containing expert knowledge of the medical 

domain and user profile information) these detected activities are intelligently manipulated to 

infer higher level activities and also to make a situational analysis. The experimental results of 

the match-making process of CAME yielded good results. Rule-based filtering for situation 

analysis and decision making has verified our claims, and the results of activity recognition 

and manipulation are very encouraging in terms of accuracy. We have also extended our 

proposed CAME [6] to the analysis and decision making process. The extended CAME uses 

both A-Box (instance level) and T-Box (structure level) inference techniques that confer better 

accuracy compared to the traditional CAME. A filter is also implemented in extended CAME 

to filter out an “unknown activity” during the match making phase. This not only improves the 

accuracy of the extended CAME compared to the conventional CAME, but also results in 

better system response time. 

This paper is arranged as follows. Section 2 is the background study of existing systems. 

Section 3 discusses activity recognition techniques used for the detection of low level activity. 

In Section 4 we discuss our proposed CAME architecture that takes the output of activity 

recognition engines and uses it for decision making. Section 5 presents our results and a 

discussion of these results. We conclude our discussion in Section 6.  
 

 

Fig. 1. HARE system model [1]. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 5, NO. 11, November  2011                         2019 

2. Background Study 

Numerous developments in industry and academia have already begun or are being used 

currenlty to facilitate better healthcare. In July 2008, the Ministry for Health, Welfare, and 

Family Affairs, Korea released u-Care System for a Solitary Senior Citizen (SSC). SSC 

monitors human health at home and provides limited services such as 24 hours×365 days 

safety monitoring services for a SSC, emergency-connection services, and information 

sharing services. Microsoft and Google are two pioneers who have brought Cloud healthcare 

platforms to reality for healthcare applications and services with low cost and increased 

performance. 

Microsoft developed a platform to store and maintain health and fitness information, called 

Health Vault [8]. It is a Cloud service that helps people collect, store, and share their personal 

health information. Google provides a personal health information centralization service 

known as Google Health [9]. The service allows Google users to volunteer their health records 

into the Google Health system. Volunteered information can include health conditions, 

medications, allergies, and lab results. Google Health uses the information to provide the user 

with a merged health record, information on conditions, and possible interactions between 

drugs, conditions, and allergies. The Unified Cloud Interface (UCI) standardization [10] or 

Cloud broker serves as a common interface for interaction with remote platforms, systems, 

networks, data, identity, applications, and services. UCI is composed of a semantic 

specification and ontology. The ontology provides the actual model descriptions, while the 

specification defines the details for integration with other management models. 

Various wireless technologies are currently being used in healthcare. CodeBlue [11] is one 

of the technologies developed by Harvard Sensor Network Lab. CodeBlue is based on a 

publish/subscribe model for its different services. CodeBlue mainly supports physicians and 

nurses that monitor patients; however, some of the focus is shifting toward research on 

providing reminders for the elderly to perform daily life activities [12].  These are mostly 

plan-based approaches to decide when and how to prompt subjects effectively, and are thus 

centered around time-based activities. To overcome the limitations of this system, a 

location-based reminder system was introduced [13], where a key element for reminders in 

this system is the subject’s location. But in fact, context for reminders is more important than 

simple location or time and context includes both location and time as subsets. ComMotion 

[14] is an example of a context-aware system that supports reminder applications that use only 

one sensor and are mainly based on time. It addresses how and when to prompt the subjects. 

HYCARE [15] is the most recent reminder system that takes context into consideration, and it 

develops a novel scheduling mechanism that can coordinate with different reminder services 

and remedy possible conflicts. 

The idea in [16] is based on the Markov process for decision making (a decision model 

capable of taking into account the uncertain effects of an action with the tradeoffs of both 

short-term and long-term objectives). The system is designed to monitor elderly dementia 

patients and provide them autonomous guidance to complete their activities of daily life. The 

authors of that study focused on facilitating hand washing activity using a video camera. A 

conceptual model/space is developed for hand washing and then used by the system when the 

activity is being performed by patients, and it provides reminders for different steps from the 

conceptual model/space. The system in [4] is a more realistic system that not only uses 

ontology to incorporate context in intelligent processing of the collected information, but also 

focuses on the information collected from sensors such as a smoke detector, GPRS modem, 

infrared control and X10 appliances that actually facilitate more in-home care for the person 

than person healthcare. This system is based on the Event-Condition-Action (ECA) model; 
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however, for support in healthcare, the system needs to collect data on the activities performed 

by humans in addition to environmental information.  

The systems discussed above do not use real-time activities or only use a single type of 

real-time activity performed by the subject and then generate reminders or even make 

decisions based on that information. They only consider the context to the level of time and 

location, which results in inflexible system behaviour. These systems can mostly be 

categorized as reminder systems or homecare systems, but the important thing is to facilitate 

healthcare where these systems fail to perform. The existing Cloud-based Healthcare system 

does not integrate wireless sensor networks, which is necessary to obtain real-time information 

on patients and/or the environment in order to monitor and analyze emergency situations. 

3. Activity Recognition 

An accurate and robust human Activity Recognition (AR) and Manipulation system is 

necessary to achieve a better understanding of a situation and for decision making in 

u-healthcare environments. Many research groups are addressing the problem of determining 

Activities of Daily Life (ADL), where they mostly focus on one or a few activities [14], use 

one or few techniques [5][15][16], and often lack robustness to identify those activities in 

complex situations. Our proposed AR system incorporates video [17], accelerometer [18][19], 

location [20], and physiological data to improve the robustness and scope of ADL capabilities. 

For example, it will recognize many complex activities such as taking pills, exercising, 

watching TV, eating, teeth brushing, falling down, and heart attacks. To provide intelligent 

service recommendation and situation analysis, contextual information (expert knowledge) is 

used with the help of ontology to eliminate the possibility of erroneous information generated 

from heterogeneous devices operating in that environment. The Human Activity Recognition 

Engine (HARE) shown in Fig. 1 is composed of such sub-components. The components are 

used to detect activities. Detected activities are then used by CAME for situation analysis and 

decision making. Description of these components is given below. 

The accuracy of the video-based AR depends significantly on the accuracy of human body 

segmentation [21]. The proposed system in [22] is used, but its accuracy is still questionable. 

Our methodology [23] is to incorporate an evolving term based on the Bhattacharyya distance 

[24] to the CV energy functional such that not only the differences within each region are 

minimized, but the distance between the two regions is maximized as well (for details please 

refer to [17]). After obtaining a set of body silhouettes segmented from a sequence of images, 

ICA (independent component analysis) [25 and 26] is applied to get the motion features of that 

sequence. ICA focuses on local features rather than global features as in PCA (principal 

component analysis) [26]. The extracted features are then symbolized using vector 

quantization algorithms such as K-mean clustering [27]. Finally, the symbol sequence is used 

to generate a codebook of vectors for training and recognition. 

Based on [28], a recognition model called “semi-Markov Conditional Random Fields 

(semiCRF)” [18] is being developed for activity recognition. Furthermore, the developed 

model is a novel algorithm that helps to reduce the complexity of the training phase by more 

than ten times in comparison with the original work. The algorithm is proposed for computing 

gradients of the target function by extending [28]. It reduces the complexity of computing each 

gradient from O(NTM
2
D) to O(3TM(M+D)+NTD), where T, M, D, and N are the length of the 

input sequence, number of label values, and maximum duration of a label, and the number of 

gradients, respectively. This technique is used to identify most of the activities that are used in 

the later portion of the paper for system evaluation. For details on the overall workings of the 
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proposed algorithm, please refer to [18].  

The objective of location tracking is to provide location information about the object of 

interest. Video-based AR fails in situations such as crowded tracked objects or because of 

privacy requirements (e.g., no cameras are allowed in bedrooms and bathrooms). Some 

approaches have been proposed using radio frequency (RF) [29][30] where the learning phase 

is followed and the result of inference is directly the location. A Neural Network is applied for 

our system implementation, not to infer the location directly but to infer the distances to the 

beacons, and then use Push-Pull Estimation (PPE) [20] to determine the location. This 

technique is in fact developed for an outdoor environment; with a high density of tracked 

objects and few beacons, the localization accuracy can be improved significantly. For the 

indoor tracking problem, it is still a good candidate solver because it is a successive refining 

method; the result of the last inference is used as an initial guess for the next inference, which 

is prohibited in the previous system. 

4. Context-aware Activity Manipulation Engine 

The use of ontology in activity recognition is a relatively new area of research. It helps in 

better understanding the activity in a given context. Activities recognized with the help of 

different sensors (i.e., body, location, motion, and video sensors) are low level activities and 

cannot be used for analysis and decision making. With the help of ontology, where we use the 

contextual information and link all the related activities in a chain, and customized rules we 

get higher level activities that are more usable for decision making.  

We define an ontology comprising the domain expert information representation as follows:  
 

O = {C, S, I, R, A} 
 

O is the ontology containing C concepts with I instances connected with one another using S 

slots. R is the restrictions applied on different C, I, and S. A is the auxiliary axioms and 

annotations used to enrich information in the knowledgebase that can later be used in match 

making and decision making processes. The concepts represent different diseases, symptoms, 

daily life activities that are permitted in the context of a particular disease, detailed patient 

information including profile information, and patient’s daily activity schedule. Ontology with 

the rules helps in properly extracting the higher level activity of activities set in a series, e.g., 

low level activities such as bending, sitting, jumping, and walking using ontology will result in 

a higher level activity, e.g., exercising (see Fig. 2; the Description Logic rule is given in Fig. 3). 

A detailed representation of the activities and related information are given in Fig. 4. 

 
 

 
Fig. 2. Abstract model of CAME for activity manipulation. 
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Rule 

Exercise ⊑ ∀ Activity ⊓ Activity.performedBy.Person = 1 Person ⊓  

(∃Activity.hasContents(bending) ⊔ ∃Activity.hasContents(jacking) ⊔ 

∃Activity.hasContents(jumping) ⊔ ∃Activity.hasContents(runing) ⊔ 

∃Activity.hasContents(skipping) ⊔ ∃Activity.hasContents(sliding) ⊔ 

∃Activity.hasContents(walking) ⊔ ∃Activity.hasContents(waving) = ∃ 2 

Activity.distinctContents 

Fig. 3. DL rule for exercising based on detected activities. 
 

CAME is one of the main components of HARE. It is the process of inferring high level 

activities from low level activities recognized by different sensors. A component-based 

framework architecture diagram of CAME is shown in Fig. 5 with extensions, while the 

detailed description of all the components is given below. 

A Knowledgebase (KB) serves as the backbone of CAME. It is responsible for proper 

communication of information among all the components of CAME. It stores all possible 

types of activities that a human body can perform in different contexts/situations along with 

information about different activity priorities for different users and groups of users. Proper 

engineering of the KB is most important in CAME development. To engineer the KB we have 

to look at the same problem from different angles. We have developed a Knowledgebase for 

activity representation and have divided activities into Temporal and Non-Temporal Activity 

classes. In the same way we have modelled all the other concepts in KB related to activity as 

well as to the subject that performs the activities.  

 
activityOnto:Person_Instance_654 

 a       activityOnto:Person ; 

 activityOnto:has activityOnto:Patient , activityOnto:PhD , activityOnto:High_Age; 

activityOnto:hasAge     68; 

activityOnto:hasDesignation                activityOnto:Professor; 

activityOnto:hasID     654; 

activityOnto:hasName     "Mr. Raazi". 
 

activityOnto:Activity_Instance_20090614140013345 

a       activityOnto:Activity ; 

activityOnto:hasConsequentAction   activityOnto:Rule; 

activityOnto:hasID   345; 

activityOnto:hasName             "Running"; 

activityOnto:hasType                         "Motion"; 

activityOnto:isA    activityOnto:Room_Instance_Living; 

activityOnto:performedAtTime           2010:11:14:14:00:13; 

activityOnto:performedBy                   activityOnto:Person_Instance_654. 
 

activityOnto:Activity_Instance_20090614140013347 

a       activityOnto:Activity ; 

activityOnto:hasConsequentAction   activityOnto:Rule; 

activityOnto:hasID   347; 

activityOnto:hasName              "Walking"; 

activityOnto:hasType                          "Motion"; 

activityOnto:isA     activityOnto:Room_Instance_Living; 

activityOnto:performedAtTime            2010:11:14:14:00:18; 

activityOnto:performedBy                    activityOnto:Person_Instance_654. 
 

activityOnto:Activity_Instance_20090614140013346 

a       activityOnto:Activity ; 

activityOnto:hasConsequentAction   activityOnto:Rule; 

activityOnto:hasID   346; 

activityOnto:hasName             "Jumping"; 

activityOnto:hasType                         "Motion"; 

activityOnto:isA    activityOnto:Room_Instance_Living; 

activityOnto:performedAtTime           2010:11:14:14:00:15; 

activityOnto:performedBy                   activityOnto:Person_Instance_654. 
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activityOnto:Activity_Instance_20090614140013348 

a       activityOnto:Activity ; 

activityOnto:hasConsequentAction   activityOnto:Rule; 

activityOnto:hasID   348; 

activityOnto:hasName             "Bending"; 

activityOnto:hasType                         "Motion"; 

activityOnto:isA    activityOnto:Room_Instance_Living; 

activityOnto:performedAtTime          2010:11:14:14:00:22; 

activityOnto:performedBy                  activityOnto:Person_Instance_654. 

Fig. 4. OWL representation (using N3 notation) of activities that result in an exercise activity 

 

Activity related information is extracted from the XML and Text files generated by Activity 

Recognition Engines. Thus the activity needs to be formally represented in a predefined 

semantic structure [31]. For this reason, CAME formally represents (see Fig. 4) the activities 

that are extracted in the previous step, while the representation is provided by the KB. Fig. 4 is 

the N3 representation of newly detected activities (with activity labels) including the context 

information, i.e., type of activity, time the activity is performed, location where activity is 

performed, sensor used, and subject who performed the activity. Each subject has its own 

historical meta information and profile information that contribute to decision making, which 

is linked with the subject instance.  

The activities detected are then verified for two reasons: (1) to verify the consistency of the 

newly recognized activity against the KB developed for the activities, and (2) after consistency 

verification, to enforce existence verification for the activity, i.e., is this activity already 

present in the Knowledgebase or not? If it is not present then it is populated in the KB. In order 

to manipulate information from the KB, Parser is responsible for properly handling all 

operations regarding that matter. The Parser normally communicates with the Activity 

Representation component to properly represent the activity; it also parses the KB for a variety 

of different reasons such as activity verification and decision making. The Parser is also used 

to populate the KB for newly recognized activities. 
 

 

Fig. 5. Context-aware Activity Manipulation Engine (CAME); inferring high level activities from low 

level activities. 

 

In order to understand the context of an activity and to extract high level activities from low 

level activities recognized by various sensors, an Inference Engine is required for the analysis 

of these activities and to make proper personalized decisions on behalf of human users. This 

requires activity information with respect to contextual information and infers high level 
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activities. To facilitate the decision making, we have incorporated expert (medical doctor) 

knowledge with the help of the description logic rules given in Table 2. We developed a Two 

Phase Algorithm (see Algorithm-1) to infer high level activities and make decisions. 

Two-phase filtering for decision making is used since only the results of match making are 

insufficient in healthcare systems. The first phase is the match making process. Here, newly 

detected activity is matched against the already existing activities in the KB and for this 

purpose we use semantic matching techniques. The match making process incorporates 

different information and at various levels, such as: the activity, its possible “before and after” 

activities, the time the activity is performed, the location of the performed activity, the subject 

performing the activity, and the subject’s medical history that might be useful for activity 

manipulation (e.g., disease, symptoms, age, and doctor prescription). The second phase is the 

rule-based filtering of the matched results returned from the KB for the newly detected activity 

using the inference engine. After the inference process, the system can make decisions or give 

suggestions for or against different activities based on the description logic rules incorporating 

expert knowledge. Thus the Decision Making module is responsible for performing/executing 

actions against the suggestions made by the Inference Engine. 

 
Algorithm CAME (Process Activity): 

This algorithm predefines the matching threshold of activity to ψ = 0.70.  

Input: Human activities ontology O containing profile information. 

Input: Instance of newly detected activity A, A ∈ O, which lists activities in the ontology O. 

Input: Decision rules R used for decision making. 

Output: Higher level activity HA and/or decision commands DC based on the inference results. 

1. /* Receive newly detected activities from activity recognition engines containing subject and 

sensor information */ 

2. GetActivity(A) 

3. /* Parse ontology model for all the activities, filter out unknown activities, initiate match 

 making process with defined threshold, calculate semantic affinity and return matched 

 activities in a sub-ontology model */ 

4. O ← Filter(Parse(O), ¬ “Unknown Activity”) 

5. Osub ← SemanticAffinity(A, O, ψ) 

6. /* Read rules from the rule file and maintain in an array R*/ 

7. R[]← ReadRules(Rules File) 

8. /* Start inference process using forward chaining */ 

9. foreach R ∈ R[] do 

10.    /* Process for decision command */ 

11.    If R :  A ⊓ ∃ Osub.Activity ⊓ ∃ Osub.Action then 

12.       /* Store the decision command */ 

13.       DC[]  ←  {x ∣ < R, x > Action} 

14.    else      

15.     /* Process for higher level activity */ 

16.       HA[] ← O ⊓ {x ∣ < A, x > hasAssociation} 

17.    Endif 

18. End 

19. /* Execute most valued commands and store higher activities*/ 

20. Execute(DC[ψ]) 

21. O
/
 ← O + HA[ψ]  

22. End 

Algorithm 1. CAME algorithm for activity manipulation. 
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5. Implementation and Results 

We deployed our
 
system on a Cloud to support Alzheimer’s patients. Our general system 

deployment design is shown in Fig. 6. The patient’s home includes a kitchen, a bedroom and a 

living room. The overall installed devices are: MASol Sensor, Biosensor, MICAZ, Camera, 

PDA, Cell Phone, Phone, Laptop, and Computer. The Mobile Activity Sensor Logger 

(MASoL) serves in the infrastructure layer to collect and monitor human and environmental 

information. MASoL is our own developed sensor logger that contains 13 axis sensors, which 

gathers and stores raw activity data. For convenience, all kinds of sensors are integrated into 

one board with flexible software architecture for efficient data collection. A biosensor is used 

to detect the biological readings of the human body such as blood pressure and blood glucose. 

MICAZ is a low power consuming device used in the wireless sensor network that has the 

additional capability to function as a router. It is used primarily for monitoring temperature, 

barometric pressure, and high-speed sensor data transmission.  

The MASoL, wearable-sensors, video cameras, and location tracking engines are deployed 

in the patient’s home to collect sensory data and images. We have also deployed motion 

sensors for simple motion detection of the patient. This information is then used by CAME for 

situational analysis and decision making. We deploy a Cloud gateway in the living room to 

collect data from all sensors and cameras. It connects to the Cloud via a high-speed Internet 

router. Doctors, nurses, and the patient’s relatives (e.g., his daughter) can easily access this 

information via a Web2.0 interface. 

Ontology defines formal semantics for information, allowing information to be processable 

by computer systems and system agents. It defines real-world semantics for resources, 

allowing them to link machine processable content in a meaningful way based on consensual 

terminology. Researchers have different approaches to using ontology for the introduction of 

context in the system. In [4], the authors only focused on the location and time information of 

an activity. In our approach, we use the location and time information in addition to user 

profile information and information about the environment in which the user is currently 

located in order to make the system more personalized. 

 

 

Fig. 6. Overall set-up in the patient’s home. 
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To implement CAME with all its components, we used Jena2, Protégé, Protégé-OWL, Arq, 

and Pellet 3.4 (for inference). The outcome of CAME is partially dependent on the results of 

activity recognition modules that are responsible for detecting activities from the raw data 

collected by the sensors. We wrote SPARQL queries that are executed using the Jena2 API 

while using the functionality of the Arq API to obtain information about some specific activity 

and their consequent actions. Fig. 7 is a query for obtaining information about some particular 

activity and their consequent actions. For this query, the activity is provided by the system or 

user and then its corresponding information is extracted. 
 

"SELECT ?activityName ?hasConsequentAction ?type ?performedBy ?performerName ?time  

?actionDes ?performedAt ?performedAtLoc ?hasType ?actionTime WHERE { <" + 

strNS + strActivity + "> <" + strNS +  "hasName>  ?activityName ." + 
"<" + strNS + strActivity + "> <" + strNS + "hasConsequentAction> ?hasConsequentAction ." +  

"<" + strNS + strActivity + "> <" + strNS + "hasType> ?type ." + 

"<" + strNS + strActivity + "> <" + strNS + "performedAtTime> ?time ." + 
"OPTIONAL {<" + strNS + strActivity + "> <" + strNS + "performedBy> ?performedBy} ." + 

"OPTIONAL {?performedBy <" + strNS + "hasName> ?performerName} ." + 

 "?hasConsequentAction <" + strNS +  "hasActionDescription>  ?actionDes ." + 
"?hasConsequentAction <" + strNS + "hasType> ?hasType ." + 

"?hasConsequentAction <" + strNS + "hasTime> ?actionTime ." + 

"OPTIONAL {?hasConsequentAction <" + strNS + "hasPerformedAt> ?performedAt} ." + 
"OPTIONAL {?performedAt <" + strNS + "hasName> ?performedAtLoc}}"; 
 

Fig. 7. SPARQL query to extract all the corresponding information of an activity. 
 

Our proposed algorithm is a two-phase algorithm, i.e., Match Making and Rule-Based 

Filtering. For the match-making process, different algorithms for ontology matching (e.g., 

Falcon [32], FOAM [33], H-Match [34], Lily [35], and Prompt [36]) were tested for their 

performance. In order to test these algorithms, we used standard data sets of Human and 

Mouse ontologies (available online at http://oaei.ontologymatching.org/). In our case, the 

number of activities in the KB increase as the everyday activities performed by the subjects are 

stored. To handle such cases and select appropriate matching algorithm, different incremental 

changes were introduced in the Human and Mouse ontologies and the algorithms were 

checked for all of these different versions. Table 1 shows the matching time for all of these 

algorithms on the data sets. From these systems, we dropped Lily as it is not openly available 

and Prompt as it was only focusing on syntactic matching.  

 
Table 1. Matching results for FOAM, Falcon, Lily, Prompt, and H-Match with respect to time. Units of 

time in this table is in minutes. 

Human and 

Mouse Ontology  
FOAM Time Falcon Time Lily Time Prompt Time H-Match Time 

HuV1 and MoV1 204.13 5.04 38.01 1.53 8.43 

HuV2 and MoV2 207.10 5.01 35.57 1.5 8.22 

HuV3 and MoV3 211.14 4.47 35.17 1.48 8.23 

HuV4 and MoV4 212.22 5.43 35.44 1.52 8.56 

 

In our given situation, we need to find a match in the KB for a particular activity that has 

been performed by the subject. For this purpose, we tested FOAM, Falcon, and H-Match on 

our real collected data to determine the accuracy and execution time for these algorithms. Fig. 

8-(a) and Fig. 8-(b) shows the results of Falcon, FOAM, and H-Match for accuracy and 

execution time, respectively. These algorithms have their own pros and cons, the discussion of 

which is beyond the scope of this paper. In our given customized situation, we found Falcon to 

be more suitable for the match making process, though there is little difference among the 
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results. The results of these algorithms in terms of both accuracy and execution depend 

strongly upon the threshold value set for the match and the number of iterations for finding the 

match. We used Falcon for the purpose of match making newly detected activities against the 

already stored activities and related information in the KB. 
 

 
Number of experiments 

 

 
Number of experiments 

 

Fig. 8. (a) The precision of the Falcon, FOAM and H-Match algorithms and (b) a comparison of the 

execution time for these algorithms. 

 

We tested CAME using 12 different experiments with an increasing number of activities. 

As discussed above, the numbers of activities increase as the subject continues to perform 

different activities and these are stored in the KB. All activities in these 12 experiments are 

real-time activities detected by the sensors discussed above. In Fig. 9, the y-axis is the % of 

Precision, Recall, and F-Measure for the match making process while the x-axis represents the 

number of experiments. The graph in Fig. 9 shows that the precision, recall, and f-measure 

decreases with increasing number of activities. However, with the increasing number of 

experiments, precision, recall, and f-measure are smoothed with an average of 0.759, 0.636, 

and 0.692, respectively. The video demonstration of our overall system deployment and 

operation is available online.
1
 The result of the match making phase is not accurate enough to 

be used for decision making. Therefore, after match making, the results are filtered through the 

rules given in Table 2 in order to generate appropriate suggestions and recommendations and 

to make decisions. 
 

                                                           
1 http://www.youtube.com/watch?v=FfRpsjD3brg 

a 

b 
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Fig. 9. Precision, recall, and f-measure of CAME for match making against the number of performed 

experiments with an increasing number of activities.  

 
Table 2. Rules for recommendations, decision making, and higher level activity recognition. 

Rule1 

∃Activity(a1) ⊓ hasContents(eating) ⊓ hasNextActivity(null)  Activity.Create(a1)  
Rule2 

∃Activity(a1) ⊓ hasContents(taking medicine) ⊓ hasNextActivity(null)  Activity.Create(a1) 

Rule3 

∃Activity(a1) ⊓ hasContents(reading) ⊓ hasNextActivity(null)  Activity.Create(a1) 
Rule4 

∃Activity(a1) ⊓ ┚hasContents(taking medicine) ⊓ hasNextActivity(a2) ⊓ ∃Activity(a2) ⊓ 

hasContents(eating)  Activity.Create(a1) ⊓ Activity.Create(a2) ⊓ reminder(take medicine) 

Rule5 

∃Activity(a1) ⊓ hasContents(reading) ⊓ hasNextActivity(a2) ⊓ ∃Activity(a2) ⊓ hasContents(TV On)  

Activity.Create(a1) ⊓ Activity.Create(a2) ⊓ turnOff(TV) 

Rule6 

∃Activity(a1) ⊓ hasContents(doing exercise) ⊓ hasNextActivity(null)  Activity.Create(a1) ⊓ turnOn(music) 
Rule7 

Exercise ⊑ ∀ Activity ⊓ Activity.performedBy.Person = 1 Person ⊓  (∃Activity.hasContents(bending) ⊔ 

∃Activity.hasContents(jacking) ⊔ ∃Activity.hasContents(jumping) ⊔ ∃Activity.hasContents(runing) ⊔ 

∃Activity.hasContents(skiping) ⊔ ∃Activity.hasContents(siding) ⊔ ∃Activity.hasContents(walking) ⊔ 

∃Activity.hasContents(waveing) = ∃ 2 Activity.distinctContents 

Rule8 

∃Activity(a1) ⊓ hasContents(unknown exercise) ⊓ hasNextActivity(null)  Activity.Create(a1) ⊓ 

reminder(movements are wrong) 

Rule9 

∃Activity(a1) ⊓ hasContents(entering kitchen) ⊔ ∃Activity(a2) ⊓ hasContents(entering bedroom)  

Activity.Create(a1) ⊔ Activity.Create(a2) ⊓ turnOn(lights) 

Rule10 

∃Activity(a1) ⊓ hasContents(leaving kitchen) ⊔ ∃Activity(a2) ⊓ hasContents(leaving bedroom)  

Activity.Create(a1) ⊔ Activity.Create(a2) ⊓ turnOff(lights) ⊓ turnOff(TV) 

Rule11 

∃Activity(a1) ⊓ hasContents(in the kitchen) ⊓ hasNextActivity(null)  Activity.Create(a1) ⊓ turnOn(TV) 

Rule12 

∃Activity(a1) ⊓ hasContents(sit down) ⊓ hasNextActivity(a2) ⊓ ∃Activity(a2) ⊓ hasContents(looking at TV) 

 Activity.Create(a1) ⊓ Activity.Create(a2) ⊓ turnOn(TV) 

 

In CAME development, we used A-Box inference that only involves instances. Thus we 

have extended CAME to use the integration of A-Box with T-Box [37]. A-Box inference is 
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mainly used to verify the consistency at the instance level and to ensure the constraints and 

conditions of instance membership are satisfied in terms of a concept in particular and to an 

ontology in general. In contrast, T-Box focuses on the concepts and properties in an ontology. 

It depends on the axioms and roles defined to infer relationships using functional, transitive, 

inverse, and symmetric properties. Thus, A-Box focuses on the instances of ontology while 

T-Box handles the overall structure of the ontology and the constraints on the ontology 

structure.  

Before applying A-Box we used T-Box to limit the number of instances by using the KB 

structure. Another main cause for the low precision of CAME is the unknown activities 

detected by the sensors. As we focus only on a set of 18 activities, any activity performed by 

the Alzheimer’s patient not included in the set of 18 activities was reported as an “unknown 

activity.” We have also modified CAME for unknown activities by implementing a filter to 

prevent the selection of unknown activities during the match making process, which resulted 

in better system precision. However, we still need to store these activities as they may reveal 

some interesting new activities for system enhancement. For instance, when taking a bath, 

there are always two unknown activities; one before and one after. After continuous pattern 

analysis it is determined that locking and unlocking the bathroom door are detected as 

unknown activities. Still, the results of the Extended CAME depend more on the sensors 

deployed to detect human activities in a timely manner. 

 

 
 

Fig. 10. Precision comparison between CAME and extended CAME for 12 different experiments with 

an increasing number of activities. 

 

We tested CAME and Extended CAME using the same 12 experiments with an increasing 

number of activities. In Fig. 10, the y-axis is the % of precision, recall, and f-measure for the 

match making process while the x-axis represents the number of experiments. The graph in 

Fig. 10 shows that the precision of CAME is less than that of the Extended CAME. The 

precision of both decrease as the number of activities increases; however, the Extended 

CAME still maintains a good precision rate. The average precision of CAME and Extended 

CAME for the 12 experiments is 0.7590 and 0.8810, respectively. To achieve more advanced 

results, we extended the number of experiments from 12 to 36 and used activities from the 

MIT Place Lab data set (http://architecture.mit.edu/house_n/data/PlaceLab/PLIA1.htm). The 

increase in experiments from 12 to 36 is syntactic but the activities used are those taken from 

MIT. CAME and Extended CAME are tested again for 36 different experiments. The average 

precision, recall, and f-measure for both systems were calculated and are shown in Fig. 11. 
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Fig. 11. Comparative analysis of CAME and Extended CAME in terms of precision, recall, and 

f-measure for a set of 36 different experiments with an increasing number of activities. 

 

After the extensions were made to CAME, the response time of both CAME and Extended 

CAME was assessed. As shown in Fig. 12, the Extended CAME required more time in the 

initial tests (time is in seconds) to produce results as there are fewer activities and the filtering 

criteria takes more time. After some tests and increasing the number of activities, Extended 

CAME performed better than CAME. The greater the number of activities the better the 

response time of Extended CAME will be when compared to the traditional CAME. 
 

 

 
 

Fig. 12. Response time comparison between CAME and extended CAME. 

 

The results achieved by CAME and Extended CAME are highly dependent on the results of 

the Activity Recognition Engines of HARE. The increasing number of activities has two main 

effects on the overall workings of the system: 1) a decrease in system precision and 2) a delay 

in response time. We are currently experimenting with different techniques such as integrating 

A-Box with T-Box and a hybrid of forward and backward chaining to overcome the first 

limitation. We are incorporating different indexing techniques to optimize query response 

time and activity extraction from the KB to address the second limitation. 

6. Conclusion 

The Context-aware Activity Manipulation Engine (CAME) has been presented using a 

knowledge-driven approach to recognize Activities of Daily Livings (ADLs). The objective of 
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this system is to infer high-level activities from low level real-time ADLs detected by sensors 

and to facilitate the provision of better healthcare services. The nature and characteristics of 

ADLs were analyzed. Based on the analyses, ontology was used to model the ADLs (including 

activity, location, time, profile, and environmental information), domain knowledge, and 

expert knowledge. Using ontology with the knowledge engineering practice, a context model 

for personalized service provisioning and intelligent healthcare facilities has been developed. 

Ontological modeling of the context and using it for recommendation is the compelling feature 

of the proposed system. An integrated framework architecture has been developed in addition 

to the modeled knowledge in order to use the sensed activity information for generating 

reminders, alerts, and emergency situation analysis for decision making. To achieve better 

results and provide caregivers an interface for rich interaction, description logic rules have 

been incorporated. The description logic rules filter out the unnecessary information during 

decision making. The proposed system was more accurate and had  shorter response time for a 

given situation. To view the detailed operation of the proposed system, please see the video 

demonstration.  

We are planning to test the system on more activities with an extensive set of rules in future 

studies. We are also planning to work on and provide more services for different kinds of 

diseases such as stroke and Parkinson’s disease. The system in its current state produces some 

conflicting results when there is more than one subject in the environment. We are trying to 

overcome this issue as there are some cases in which the appropriate system response is 

unclear. For example, two subjects are in same room and one is reading a book while the other 

wants to watch TV. We are developing different heuristics, rules, and scheduling to overcome 

these issues. Currently planned solutions are: 1) set priorities and levels for different subjects; 

2) a subject who initiated activity first will be served in cases of conflict; 3) the location of the 

conflict will be considered for resolution, i.e., if its subject A’s room then the system will 

respond in favor of subject A; and 4) the subject’s schedule will play an important role in 

handling conflicts, i.e., if a subject’s planned activity is relaxing or entertainment then that 

subject will be served in a common room location. 
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