• Title/Summary/Keyword: Sensor gain error

Search Result 56, Processing Time 0.023 seconds

A Study on Performance Improvement Method of Fixed-gain Self-alignment on Temperature Stabilizing State of Accelerometers (가속도계 온도안정화 상태에서 고정이득방식 자체정렬의 성능개선 방법에 대한 연구)

  • Lee, Inseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.435-442
    • /
    • 2016
  • For inertial navigation systems, initial information such as position, velocity and attitude is required for navigation. Self-alignment is the process to determine initial attitude on stationary condition using inertial measurements such as accelerations and angular rates. The accuracy of self-alignment is determined by inertial sensor error. As soon as an inertial navigation system is powered on, the temperature of accelerometer rises rapidly until temperature stabilization. It causes acceleration error which is called temperature stabilizing error of accelerometer. Therefore, temperature stabilizing error degrades the alignment accuracy and also increases alignment time. This paper suggests a method to calculate azimuthal attitude using curve fitting of horizontal control angular rate in fixed-gain self-alignment. It is verified by simulation and experiment that the accuracy is improved and the alignment time is reduced using the proposed method under existence of the temperature stabilizing error.

An Algorithm for Energy Efficient Cooperative Communication in Wireless Sensor Networks

  • Kumar, K. Senthil;Amutha, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3080-3099
    • /
    • 2016
  • In this paper, we propose an algorithm for energy efficient cooperative communication in wireless sensor network (WSN). The algorithm computes the appropriate transmission distance corresponding to optimal broadcast bit error probability, while taking the circuit energy consumption and the number of cooperating nodes into consideration. The algorithm guarantees minimum energy consumption by choosing higher value of bit error probability for cooperative phase and lower value of bit error probability for broadcast phase while maintaining the required end-to-end reliability. The simulation results show that the proposed algorithm provides significant energy saving gain when compared with traditional fixed distance schemes and is suitable for applications demanding energy efficiency with high quality of reception.

Low-Power Sigma-Delta ADC for Sensor System (센서 시스템을 위한 저전력 시그마-델타 ADC)

  • Shin, Seung-Woo;Kwon, Ki-Baek;Park, Sang-Soon;Choi, Joogho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.299-305
    • /
    • 2022
  • Analog-digital converter (ADC) should be one of the most important blocks that convert various physical signals to digital ones for signal processing in the digital signal domain. As most operations of the analog circuit for sensor signal processing have been replaced by digital circuits, high-resolution performance is required for ADC. In addition, low-power must be the critical issue in order to extend the battery time of mobile system. The existing integrating sigma-delta ADCs has a characteristic of high resolution, but due to its low supply voltage condition and advanced technology, circuit error and corresponding resolution degradation of ADC result from the finite gain of the operational amplifier in the integrator. Buffer compensation technique can be applied to minimize gain errors, but there is a disadvantage of additional power dissipation due to the added buffer. In this paper, incremental signal-delta ADC is proposed with buffer switching scheme to minimize current and igh-pass bias circuit to improve the settling time.

Analysis of Measured Azimuth Error on Sensitivity Calibration Routine (Sensitivity Calibration 루틴 수행시 Tilt에 의한 방위각 측정 오차의 분석)

  • Woo, Kwang-Joon;Kang, Su-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The accuracy of MR sensor-based electronic compass is influenced by the temperature drift and DC offset of the MR sensor and the OP-amp, the magnetic distortion of nearby magnetic materials, and the compass tilt We design the 3-axis MR sensor and accelerometers-based electronic compass which is compensated by the set/reset pulse switching method on the temperature drift and DC offset, by the execution of hard-iron calibration routine on the magnetic distortion, and by the execution of the Euler rotational equation on the compass tilt. We qualitatively analyze the measured azimuth error on the execution of sensitivity calibration routine which is the normalization process on the different sensitivity of each MR sensor and the different gain of each op-amps. This compensation and analytic result make us design the one degree accuracy electronic compass.

Model updating using the feedback exciter : The decision of sensor location & feedback gain (궤환 제어를 이용한 모델 개선법 : 측정 센서 위치와 궤환 이득값 설정)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.802-807
    • /
    • 2002
  • The updating of FE model to match it with the experimental results needs the modal information. There are two cases where this methodology is ill-equip to deal with; under-determined and ill-conditioning problem. The feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains can deal with these problems as the new modal data from the closed loop system generate more constraints the updating parameters should obey. The new modal data from the closed loop system should be different to enhance the condition of the modal sensitivity matrix. In this research, a guide for the selection of the sensor locations and the decision of the corresponding output feedback gains is proposed. This method is based on the sensitivity of the modal data with respect to the feedback gains. Through the proper selection of the exciter and sensor locations and the feedback gain, the eigenvalue sensitivity of the updating parameters which cause the ill-conditioning of the modal sensitivity matrix can be modified and consequently the error contamination in updating parameters are reduced.

  • PDF

A Position Control of BLDC Motor in a Rail Guided System for the Un-maned Facility Security (무인 설비 감시용 레일 가이드 구동장치에서 BLDC 전동기의 위치 제어)

  • Bae, Jong-Nam;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • A low-cost BLDC motor with hall sensor is used to drive the position control of a facility security monitoring system in this paper. Low measurable frequency of the hall sensor signal in low-speed regions results in difficulty in obtaining accurate speed detection and position control. To improve system control performance, we propose a variable gain of position controller and stop mode control scheme according to the motor speed and error position with pre-set deceleration time. The proposed stop mode control scheme is activated around the stop position to forcibly move the BLDC motor to the stop position in low speed. In the proposed stop mode, the motor current is controlled by the actual speed with the reference rotating angle. The control performance of the proposed position control is verified through experiments at the actual rail guided facility security monitoring system.

Analysis of Viterbi Algorithm for Low-power Wireless Sensor Network (저전력 무선 센서네트워크를 위한 비터비 알고리즘의 적용 및 분석)

  • Park, Woo-Jun;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.1-8
    • /
    • 2007
  • In wireless sensor network which uses limited battery, power consumption is very important factor for the survivality of the system. By using low-power communication to reduce power consumption, error rate is increased in typical conditions. This paper analyzes power consumption of specific error control coding (ECC) implementations. With identical link quality, ECC provides coding gain which save the power for transmission at the cost of computing power. In sensor node, transmit power is higher than computing power of Micro Controller Unit (MCU). In this paper, Viterbi algerian is applied to the low-transmit-power sensor networks in terms of network power consumption. Practically, Viterbi algorithm presents 20% of reduction of re-transmission in compared with Auto Repeat Request (ARQ) system. Furthermore, it is observed that network power consumption is decreased by almost 18%.

Design of the Well-Conditioned Observer - A Linear Matrix Inequality Approach - (Well-Conditioned 관측기 설계 - A Linear Matrix Inequality Approach -)

  • Jung, Jong-Chul;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2004
  • In this paper, the well-conditioned observer for a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic uncertainties such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic uncertainties such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_{2}$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic uncertainties. In stochastic viewpoints, the estimation variance represents the robustness to the stochastic uncertainties and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

Precision Control of a Torque Standard Machine Using Fuzzy Controller (퍼지제어기를 이용한 토크 표준기의 정밀제어)

  • Kim, Gab-Soon;Kang, Dae-Im
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.46-52
    • /
    • 2001
  • This study describes the precision control of the torque standard machine using a self-tuning fuzzy controller. The torque standard machine should generate the accurate torque for calibrating a torque sensor. In order to reduce the relative expanded uncertainty of the torque standard machine, when a weight is hanged to the end of the torque arm for generating the torque, the sloped torque arm should be accurately controlled to the horizontal level. If the slope of the torque arm is larger from the inaccurate control, the uncertainty of the torque standard machine due to control will be larger. This applies the inaccurate torque to a torque sensor to calibrate, and the measuring error of the torque sensor generate from it. Therefore the torque arm of the torque standard machine is accurately controlled. In this paper, the self-tuning fuzzy controller was designed using a fuzzy theory, and the torque arm of the torque standard machine was accurately controlled. The control gain of the fuzzy controller, that is the membership function size of the error, the membership function size of the error change and the membership function size of the controller were determined from the self-tuning. The control results of the torque standard machine were the overshoot within 0.0076mm, the rise time within 16.70sec and the steady state error within 0.0076mm.

  • PDF

Improved Programmable LPF Flux Estimator with Synchronous Angular Speed Error Compensator for Sensorless Control of Induction Motors (유도 전동기 센서리스 제어를 위한 동기 각속도 오차 보상기를 갖는 향상된 Programmable LPF 자속 추정기)

  • Lee, Sang-Soo;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.232-239
    • /
    • 2013
  • This paper proposes an improved stator flux estimator through ensuring conventional PLPF to act as a pure integrator for sensorless control of induction motors. Conventional PLPF uses the estimated synchronous speed as a cut-off frequency and has the gain and phase compensators. The gain and phase compensators are determined on the assumption that the estimated synchronous angular speed is coincident with the real speed. Therefore, if the synchronous angular speed is not same as the real speed, the gain and phase compensation will not be appropriate. To overcome the problem of conventional PLPF, this paper analyzes the relationship between the synchronous speed error and the phase lag error of the stator flux. Based on the analysis, this paper proposes the synchronous speed error compensation scheme. To achieve a start-up without speed sensor, the current model is used as the stator flux estimator at the standstill. When the motor starts up, the current model should be switched into the voltage model. So a stable transition between the voltage model and the current model is required. This paper proposes the simple transition method which determines the initial values of the voltage model and the current model at the transition moment. The validity of the proposed schemes is proved through the simulation results and the experimental results.