• Title/Summary/Keyword: Sensor flow

Search Result 878, Processing Time 0.032 seconds

Estimating blood pressure using the pulse transit time of the two measuring from pressure pulse and PPG

  • Kim, Gi-Ryon;Ye, Soo-Young;Kim, Jae-Hyung;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • Blood pressure (BP), one of the most important vital signs, is used to identify an emergency state and reflects the blood flow characteristics of the cardiovascular system. The conventional noninvasive method of measuring BP is inconvenient because patients must wear a cuff on their arm and the measurement process takes time. This paper proposes an algorithm for estimating the BP using the pulse transit time (PTT) of the photoplethysmography (PPG) and pressure pulse from finger at the same time as a more convenient way to measure the BP. After recording the electrocardiogram (ECG), measuring the pressure pulse, and performing PPG, we calculated the PTT from the acquired signals. Then, we used a multiple regression analysis to measure the systolic and diastolic BP indirectly. Comparing the BP measured indirectly using the proposed algorithm and the real BP measured with a sphygmomanometer, the systolic pressure had a mean error of ${\pm}3.240$ mmHg and a standard deviation of 2.530 mmHg, while the diastolic pressure had a satisfactory result, i.e., a mean error of ${\pm}1.807$ mmHg and a standard deviation of 1.396 mmHg. These results are more superior than existing method estimating blood pressure using the one PTT and satisfy the ANSI/AAMI regulations for certifying a sphygmomanometer i.e., the measurement error should be within a mean error of ${\pm}5$ mmHg and a standard deviation of 8 mmHg. These results suggest the possibility of applying our method to a portable, long-term BP monitoring system.

Goal-oriented Geometric Model Based Intelligent System Architecture for Adaptive Robotic Motion Generation in Dynamic Environment

  • Lee, Dong-Hun;Hwang, Kyung-Hun;Chung, Chae-Wook;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2568-2574
    • /
    • 2005
  • Control architecture of the action based robot engineering can be divided into two types of deliberate type - and reactive type- controller. Typical deliberate type, slow in reaction speed, is well suited for the realization of the higher intelligence with its capability to forecast on the basis of environmental model according to time flow, while reactive type is suitable for the lower intelligence as it fits to the realization of speedy reactive action by inputting the sensor without a complete environmental model. Looking at the environments in the application areas in which robots are actually used, we can see that they have been mostly covered by the uncertain and unknown dynamic changes depending on time and place, the previously known knowledge being existed though. It may cause, therefore, any deterioration of the robot performance as well as further happen such cases as the robots can not carry out their desired performances, when any one of these two types is solely engaged. Accordingly this paper aims at suggesting Goal-oriented Geometric Model(GGM) Based Intelligent System Architecture which leads the actions of the robots to perform their jobs under variously changing environment and applying the suggested system structure to the navigation issues of the robots. When the robots do perform navigation in human life changing in a various manner with time, they can appropriately respond to the changing environment by doing the action with the recognition of the state. Extending this concept to cover the highest hierarchy without sticking only to the actions of the robots can lead us to apply to the algorithm to perform various small jobs required for the carrying-out of a large main job.

  • PDF

Microscopy Study for the Batch Fabrication of Silicon Diaphragms (실리콘 Diaphragm의 일괄 제조공정을 위한 Microscopy Study)

  • 하병주;주병권;차균현;오명환;김철주
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.33-40
    • /
    • 1992
  • Several etching phenomena were observed and analyzed in diaphragm process performed on 4-inch (100) Si wafers for sensor application. In case of deep etching to above 300$\mu$m depth, the etch-defects appeared at etched surface could be classified into three categories such as hillocks, reaction products, and white residues. It was known that the hillock had a pyramidal shape or trapizoidal hexahedron structure depending on the density and size of the reaction products. The IR spectra showed that the white residue, which was due to the local over-saturation of Si dissolved in solution, was mostly Si-N-O compounds mixed with a small amount of H and C etc. Also, the difference in both the existence of etch-defects and etch rate distribution over a whole wafer was investigated when the etched surfaces were downward, upward horizontally and erective in etching solutions. The obtained data were analyzed through flow pattern in the etching bath. As the results, the downward and erective postures were favorable in the etch rate uniformity and the etch-defect removal, respectively.

  • PDF

Design and Implementation of Electrocardiogram Data Interpretation system using AdaBoost Algorithm (AdaBoost 알고리즘을 이용한 심전도 정보 판독 시스템의 설계 및 구현)

  • Lim, Myung-Jae;Hong, Jin-Kyoung;Kim, Kyu-Ho;Choi, Mi-Lim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.129-134
    • /
    • 2010
  • Diseases such as cardiovascular illnesses, according to the National Statistical Office opened reveals that 600-800 people were killed, blood pressure, arteriosclerosis, heart disease, stroke, etc. will be a flow of blood disorders that occur in cardiovascular illnesses today are fulfilling the Master / Slave samangryulin disease appears high. Died of cardiovascular disease also told them the correct first aid survival when patients are accounted for approximately 40% of emergency rapid response is required. Therefore, this paper, the weak classifier in the AdaBoost algorithm to generate a strong classifier by combining effects throughout the analysis to measure the ECG, and cardiovascular disease that occurred to you as soon as the emergency management system that can deliver on the proposed Desk was. The electrocardiogram data measured by the ZigBee-based sensors, communication devices and emergency transport for emergency alarms in the determination and monitoring of the management desk by providing health services to enable the delivery was fast.

Development of Coolant/Waste-oil Separating and Cooling System with Chip Treatment (칩 처리가 포함된 절삭유/폐유 분리 및 냉각 시스템 개발)

  • Kim, Joong-Seon;Lee, Dong-Seop;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.16-23
    • /
    • 2017
  • For most machine tools, it is necessary to remove chips and coolant oil because it they will continue to be created during the manufacture of workpieces. Existing products that are in use are installed and used as they reflect depending on the characteristics of each device separately. This study proposes a method to remove the security chip as well as developing an integrated system capable of reducing coolant damage. The Leverage AutoCAD and CATIA program was used for 2D and 3D design, shapes were identified by utilizing the KeyShot program, and the load and displacement analysis of the development apparatus was performed utilizing the ANSYS program. After the prototype underwent sufficient design review, the mixed oil separation device had a complete sensor control program using the LabVIEW program. The chip design process for transferring experiments and experiments on the mixed oil cooling device were developed for performance tests of the product. The final product resulted in an increase in space utilization during commercialization, reduced installation costs, and caused social effects such as pulmonary flow reduction, which, through the economic costs, reduces pollution, resulting in various benefits to the industry, such as deceased errors in the workplace decreases.

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

An implementation of the continuous wave doppler system for blood flow measurement using the ultrasound (효율적인 혈류 속도 측정을 위한 연속 초음파 도플러 장치의 구현)

  • 박형재;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.516-519
    • /
    • 2001
  • To diagnose a patient's blood vessel disease, apoplexy, hypertension, arteriosclerosis, the blood velocity is very important. Determining the blood velocity methods using ultrasound are Continuous Doppler System and Pulse Doppler System. In using the Pulse Doppler System, we can obtain the position of blood velocity. But it is more complex hardware than Continuous Doppler System and it has low SNR(signal-noise ratio). So in this study, to obtain a believable information we use the Continuous Pulse Doppler System. Thus system have analog part and digital part. In analog part is composed of ultrasound generating part, the amplifying part to amplify the received signal from ultrasound sensor, the demodulation part to detect blood velocity and the filtering part to remove the noise. In digital part is composed of the A/D conversion part, digital signal processing part, and the communication part to communicate the PC. In this study to implement efficient ultrasound blood velocity measurement system, we can get the patient's blood velocity information in realtime. Thus, It is a useful in the accurate diagnosis with C.T(computered tomography), M.R.I(magnetic resonance imaging).

  • PDF

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.

The Relationship between Oxygen Saturation and Color Alteration of a Compromised Skin Flap: Experimental Study on the Rabbit

  • Prasetyono, Theddeus O.H.;Adianto, Senja
    • Archives of Plastic Surgery
    • /
    • v.40 no.5
    • /
    • pp.505-509
    • /
    • 2013
  • Background The aim of this study was to collect important data on the time of oxygen saturation change in relation to skin flap color alteration using non-invasive pulse oximetry to evaluate its ability to provide continuous monitoring of skin flap perfusion. Methods An experimental study on the monitoring of blood perfusion of 20 tube-island groin flaps of 10 male New Zealand rabbits was performed using pulse oximetry. The animals were randomly assigned to one of two groups representing a blockage of either arterial or venous blood flow. The oxygen saturation change and clinical color alteration were monitored from the beginning of vessel clamping until the saturation became undetectable. The result was analyzed by the t-test using SSPS ver. 10.0. Results The mean times from the vessel clamping until the saturation became undetectable were $20.19{\pm}2.13$ seconds and $74.91{\pm}10.57$ seconds for the artery and vein clamping groups, respectively. The mean time of the clinical alteration from the beginning of vein clamping was $34.5{\pm}11.72$ minutes, while the alteration in flaps with artery clamping could not be detected until 2.5 hours after clamping. Conclusions The use of neonate-type reusable flex sensor-pulse oximetry is objective and effective in early detection of arterial and vein blockage. It provides real-time data on vessel occlusion, which in turn will allow for early salvaging. The detection periods of both arterial occlusion and venous congestion are much earlier than the color alteration one may encounter clinically.

A Study on integrated water management system based on Web maps

  • Choi, Ho Sung;Jung, Jin Young;Park, Koo Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.57-64
    • /
    • 2016
  • Initial prevention activities and rapid propagation conditions is the most important to prevent diffusion of water pollution. If water pollutants flow into streams river or main stresm located in environmental conservation area or water intake facilities, we must predict immediately arrival time and the diffusion concentration to the proactive. National Institute of Environmental Research developed water pollution incident response prediction system linking dam and movable weir. the system is mathematical model which is updated daily. Therefore it can quickly predict the arrival time and the diffusion concentration when there are accident of oil spills and hazardous chemicals. Also we equipped with mathematical model and toxicity model of EFDC(Environmental Fluid Dynamics Code) to calculate the arrival time and the diffusion concentration. However these systems offer the services of an offline manner than real-time control services. we have ensured the reliability of data collection and have developed a real-time water quality measurement data transmission device by using the data linkage utilizing a mode bus communication and a commercial SCADA system, in particular, we implemented to be able to do real-time water quality prediction through information infrastructure of the water quality integrated management business created by utilizing the construction of the real-time prediction system that utilizes the data collected, the Open map, the visual representation using charts API and development of integrated management system development based on web maps.