• Title/Summary/Keyword: Sensor faults

Search Result 208, Processing Time 0.032 seconds

Multiple Faults Detection and Isolation via Decentralized Sliding Mode Observer for Reconfigurable Manipulator

  • Zhao, Bo;Li, Chenghao;Ma, Tianhao;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2393-2405
    • /
    • 2015
  • This paper considers a decentralized multiple faults detection and isolation (FDI) scheme for reconfigurable manipulators. Inspired by their modularization property, a global sliding mode (GSM) based stable adaptive fuzzy decentralized controller is investigated for the system in fault free, while for the system suffering from multiple faults (actuator fault and sensor fault), the decentralized sliding mode observer (DSMO) is employed to detect their occurrence. Hereafter, the time and location of faults can be determined by a fault isolation scheme via a bank of DSMOs. Finally, the effectiveness of the proposed schemes in controlling, detecting and isolating faults is illustrated by the simulations of two 3-DOF reconfigurable manipulators with different configurations successfully.

Fault Diagnosis of Linear Systems Based on the Unknown Input Observer Design Technique (미지입력 관측기 설계기법을 이용한 선형 시스템의 고장진단)

  • Kim, Min-Hyung;sAhn, Piu;Jung, Joon-Hong;Lee, Moon-Hee;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.578-580
    • /
    • 1997
  • A new method of Fault Diagnosis in linear systems using unknown input observer design technique is presented. This method is based upon the fact that the structural uncertainties, actuator faults, and sensor faults of a linear system can be rewritten in unknown inputs. The proposed method can simultaneously estimate the state variables of an actual system, as well as the actuator and sensor faults.

  • PDF

A Detection and Isolation Scheme for Nonlinear Systems with a Actuator and Sensor Faults (비선형 시스템의 액츄에이터 고장과 센서 고장을 위한 감지 및 분리 기법)

  • Han, Byung-Jo;Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1724-1725
    • /
    • 2007
  • This paper presents a fault detection and isolation(FDI) scheme for a nonlinear systems with a actuator and sensor faults. A residual generator based on the observer model generate the information for a fault detection. The proposed fault estimators are activated for a fault isolation and applied to estimate the time-varying lumped faults(model uncertainty + fault). but a fault estimator error dose not converge to zero since the derivative of lumped fault is not zero. Then the fuzzy neural network(FNN) is used to estimate the fault estimator error. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF

RNN-based integrated system for real-time sensor fault detection and fault-informed accident diagnosis in nuclear power plant accidents

  • Jeonghun Choi;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.814-826
    • /
    • 2023
  • Sensor faults in nuclear power plant instrumentation have the potential to spread negative effects from wrong signals that can cause an accident misdiagnosis by plant operators. To detect sensor faults and make accurate accident diagnoses, prior studies have developed a supervised learning-based sensor fault detection model and an accident diagnosis model with faulty sensor isolation. Even though the developed neural network models demonstrated satisfactory performance, their diagnosis performance should be reevaluated considering real-time connection. When operating in real-time, the diagnosis model is expected to indiscriminately accept fault data before receiving delayed fault information transferred from the previous fault detection model. The uncertainty of neural networks can also have a significant impact following the sensor fault features. In the present work, a pilot study was conducted to connect two models and observe actual outcomes from a real-time application with an integrated system. While the initial results showed an overall successful diagnosis, some issues were observed. To recover the diagnosis performance degradations, additive logics were applied to minimize the diagnosis failures that were not observed in the previous validations of the separate models. The results of a case study were then analyzed in terms of the real-time diagnosis outputs that plant operators would actually face in an emergency situation.

Development of a Fault-Tolerant Steer-By-Wire Control System (Fault-Tolerant Steer-By-Wire 제어 시스템의 개발)

  • Kim, Jae-Suk;Hwang, Woon-Gi;Lee, Woon-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-8
    • /
    • 2006
  • The Steer-By-Wire(SBW) system replaces complex mechanical linkages of the current steering system with electric motors, sensors, and electronic control units. However, the SBW system should guarantee its safety and reliability before commercialization, and therefore, a reliable and robust fault-tolerant technology has to be implemented. This paper proposes a fault-tolerant control algorithm for the SBW system. Based on careful analysis on propagation effects of sensor faults, a reliable fault-tolerant control strategy has been developed. The fault-tolerant controller consists of a fault detection part that monitors and detects faults in the steering wheel and road wheel sensors, and a reconfiguration part that switches to normal sensor signal based on fault detection information. It has been demonstrated by simulation that the proposed algorithm detects sensor faults accurately and enables reliable steering control under various dynamic fault situations.

Fault Detection and lsolation System for centrifugal-Pump Systems: Parity Relation Approach (원심펌프 계통의 고장검출진단시스템 : 등가관계 접근법)

  • Park, Tae-Geon;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.52-60
    • /
    • 1999
  • This paper deals with a fault detection and isolation scheme for a DC motor driven centrifugal pump system. The emphasis is placed on the design and implementation of the residual generatorm, based on parity relation, that provides decision logic unit with residuals that will be further processed to detect and isolate three important faults in the system;brush fault, impeller fault, and the speed sensor fault. Two process faults are modelled as multiplicative type faults, while the sensor fault as an additive one. With multiplicative fault, the implementation of the residual generator needs the time varying transformation matrix that must be computed on-line. Typical implementation methods lack in generality because only a numerical approximation around the assumed fault levels is employed. In this paper, a new implementation method using well tranined neural network is proposed to improve the generality of the residual generator. Application results show that the fault detection and isolation scheme with the proposed residual generator effectively isolates three major faults in the centrifugal pump system even with a wide range of fault magnitude.

  • PDF

A Study on the Design of a Fault-Tolerance Rotor Magnetic Bearing Systems (고장허용 회전체 자기베어링 시스템의 설계 연구)

  • 조성락;경진호;노승국;박종권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.304-308
    • /
    • 2004
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings. These failure modes include power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults. In this paper, we designed and tested a fault-tolerant magnetic bearing system. The system can cope with the actuator faults as well as the faults in position sensors, which are the two major fault modes in a magnetic bearing system.

  • PDF

Fault Detection and Isolation System for DC motor driven Centrifugal Pump-Pipe Systems: Parity Relation Approach (직류전동기 구동 원심펌프-파이프 계통의 고장검출진단시스템: 등가관계 접근법)

  • Park, Tae-Geon;Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.819-821
    • /
    • 1998
  • This paper deals with a method or a residual generation for fault isolation in a centrifugal pump with a water circulation system, driven by a speed controlled dc motor. It is based on parity relations derived from the moving-average model of the system and is used to identify sensor faults and two possible brush and impeller faults, where the former is dealt with additive faults, while the latter characterized as discrepancies between the nominal and actual plant parameters of the system is modelled by multiplicative faults. We will represent the propagation of this uncertainty to the model matrices by the approximate handling of partial derivatives of polynomials. With multiplicative faults, the transformation matrix implemented in the residual generator are calculated on-line. The simulation studies demonstrate that small changes of the system can be detected and diagnosed by using the method.

  • PDF

A New Fault Detection and Accomodation Scheme in Estimator Based Control Systems

  • Lee, Kee-Sang;Park, Eui-Sung;Park, Seung-Yub
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.197-201
    • /
    • 1988
  • A reliable Analytical Redundancy(AR) based Fault Detection Scheme(FDS) that can detect, discriminate sensor fault and process fault is presented. And a Fault Tolerant Control System ( FTCS ) with the FDS that performs original control objective without considerable loss of control performance in the face of sensor/process faults is constructed. These propositions are valuable in the sense that it resolves the well known sensitivity problem and that sensor/process faults can be detected, discriminated so that effects of any fault can be promptly accomodated by reconfiguring control system structure automatically.

  • PDF

Soft Fault Detection Using an Improved Mechanism in Wireless Sensor Networks

  • Montazeri, Mojtaba;Kiani, Rasoul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4774-4796
    • /
    • 2018
  • Wireless sensor networks are composed of a large number of inexpensive and tiny sensors used in different areas including military, industry, agriculture, space, and environment. Fault tolerance, which is considered a challenging task in these networks, is defined as the ability of the system to offer an appropriate level of functionality in the event of failures. The present study proposed an intelligent throughput descent and distributed energy-efficient mechanism in order to improve fault tolerance of the system against soft and permanent faults. This mechanism includes determining the intelligent neighborhood radius threshold, the intelligent neighborhood nodes number threshold, customizing the base paper algorithm for distributed systems, redefining the base paper scenarios for failure detection procedure to predict network behavior when running into soft and permanent faults, and some cases have been described for handling failure exception procedures. The experimental results from simulation indicate that the proposed mechanism was able to improve network throughput, fault detection accuracy, reliability, and network lifetime with respect to the base paper.