• Title/Summary/Keyword: Sensor faults

Search Result 208, Processing Time 0.029 seconds

Performace Improvement of Self-Validating Sensors Using Fuzzy Logic (퍼지 논리를 사용한 Self-Validating 센서의 성능 개선)

  • 나승유;배희종
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.349-352
    • /
    • 2000
  • In case of sensor faults, they can be detected by examining the sensor output values and the typical values of the system. And then the types of the faults are recognized by the analysis of symptoms of faults. If necessary self-validating sensor values are synthesized according to the types of faults, and then they are used for the controller instead of the raw data. In this paper, fuzzy logic is introduced in SEVA sensors to improve the system performance. And then the method is applied to the control of a flexible link system with the sensor fault problems for exact positioning to show the applicability.

  • PDF

Active Fault-Tolerant Control for a Class of Nonlinear Systems with Sensor Faults

  • Wang, Youqing;Zhou, Donghua;Qin, S.Joe;Wang, Hong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.339-350
    • /
    • 2008
  • A general active fault-tolerant control framework is proposed for nonlinear systems with sensor faults. According to their identifiability, all sensor faults are divided into two classes: identifiable faults and non-identifiable faults. In the healthy case, the control objective is such that all outputs converge to their given set-points. A fault detection and isolation module is firstly built, which can produce an alarm when there is a fault in the system and also tell us which sensor has a fault. If the fault is identifiable, the control objective remains the same as in the healthy case; while if the fault is non-identifiable, the control objective degenerates to be such that only the healthy outputs converge to the set-points. A numerical example is given to illustrate the effectiveness and feasibility of the proposed method and encouraging results have been obtained.

Simultaneous Faults Detection and Isolation Using Null Space Components of Faults for INS Sensor Redundancy

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.32.4-32
    • /
    • 2002
  • We consider inertial navigation system (INS) sensor redundancy and propose a method which uses singular value decomposition to detect and isolate faults when even two sensors have faults simultaneously. When redundant sensor configuration is given, such as symmetric configuration in INS, the range space and null space of configuration matrix are determined. We use null space of configuration matrix and define 21 reference fault vectors which include 6 one-fault vectors and 15 two-fault vectors. Measurements are projected into null space of measurement matrix and compared with 21 normalized reference fault vectors, which determines fault detection and isolation.

  • PDF

Design of controllers for Angle control of Aerodynamic Plant using SEVA (SEVA를 이용한 Aerodynamic Plant의 각도 제어를 위한 제어기의 설계)

  • 나승유;배희종;기효종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.49-49
    • /
    • 2000
  • Sensors are used to measure the states in need for control in a closed-loop system. Accuracy, reliability, stability of sensors are closely related to the controller performance. In case of sensor faults, they are detected by examining the sensor output values and the major values of the system. And then the types of the faults are recognized by the analysis of symptoms of faults. In this paper, a self-validating sensor is applied to the control of an aerodynamic plant system with the sensor fault problems in the potentiometer module for exact positioning to show the applicability. We propose a digital controller can provide a satisfactory loop performance even when the sensor faults occur.

  • PDF

Fault Tolerant Clock Management Scheme in Sensor Networks (센서 네트워크에서 고장 허용 시각 관리 기법)

  • Hwang So-Young;Baek Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.868-877
    • /
    • 2006
  • Sensor network applications need synchronized time to the highest degree such as object tracking, consistent state updates, duplicate detection, and temporal order delivery. In addition, reliability issues and fault tolerance in sophisticated sensor networks have become a critical area of research today. In this paper, we proposed a fault tolerant clock management scheme in sensor networks considering two cases of fault model such as network faults and clock faults. The proposed scheme restricts the propagation of synchronization error when there are clock faults of nodes such as rapid fluctuation, severe changes in drift rate, and so on. In addition, it handles topology changes. Simulation results show that the proposed method has about $1.5{\sim}2.0$ times better performance than TPSN in the presence of faults.

Design of Digital Controllers with Self-Validating Intelligent Sensors (Self-Validating 지능형 센서를 사용한 디지털 제어기의 설계)

  • 나승유;배희종
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.51-54
    • /
    • 2000
  • We are concerned with processing methods of the measurement values of sensors in the control system. When some faults happen to sensor components, the measurement value of sensors cause the malfunction of the plant. So it is necessary to detect and reduce the influence of faults to control with reliability for the overall system. The sensor status must be always good for best demonstration of the controller performance. A self-validating sensor detects the sensor state from the measurement value, reconstruct a soft sensor and can improve reliability of the sensor. If sensor faults, the sensor is detected and reconstructed with the best estimate from its correlation to other sensors and historical data. It is applied to the control of a flexible link system with the sensor fault problems in the light sensor module for position to show the applicability. In this paper, we propose a digital controller which reduces deflection of the moving set-point by reconstructing output of a sensor when the sensor fault is detected.

  • PDF

Design and Implementation fusion oil lubricator system using WLAN on based flexible link system (유연링크시스템 기반에서 WLAN 방식을 적용한 퓨전 주유시스템의 설계와 구현)

  • 김휘영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.283-286
    • /
    • 2002
  • For the satisfying performance of a oil lubricator, design of a oil controller for the system which meets the required specifications and its supporting hardware that keep their functioning is important. Among the hardware of a control system, oil system are most vulnerable to malfunction. Thus it is necessary to keep track of accurate and reliable oil readings for good fusion oil lubricator performance. In case of oil lubricator ,data loss, ssr trigger error faults, they are detected by examining the data system output values and the major values of the system, and then the faults are recognized by the analysis of symptoms of faults. If necessary electronic -sensor values are synthesized according to the types of faults, and then they are used for the controller instead of the raw data. In this paper, a fast-32bit cpu micorprocessor applied to the control of flexible link system with the sensor fault problems in the error module fer exact positioning to show the applicability. It is shown that the fusion oil lubricator can provide a satisfactory loop performance even when the sensor faults occure

  • PDF

Fault Tolerant Control of Wind Turbine with Sensor and Actuator Faults

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.28-37
    • /
    • 2013
  • This paper presents a fault-tolerant control technique for wind turbine systems with sensor and actuator faults. The control objective is to maximize power production and minimize turbine loads by calculating a desired pitch angle within their limits. Any fault with a sensor and actuator can cause significant error in the pitch position of the corresponding blade. This problem may result in insufficient torque such that the power reference cannot be achieved. In this paper, a fault-tolerant control technique using a robust dynamic inversion observer and control allocation is employed to achieve successful pitch control despite these faults in the sensor and actuator. The observer based detection method is used to detect and isolate sensor faults by checking whether errors are larger than threshold values. In addition, the control allocation technique is adopted to tolerate actuator fault. Control allocation is one of the most commonly used fault-tolerant control techniques, especially for over-actuated systems. Further, the control allocation method can be used to achieve the power reference even in the event of blade actuator fault by redistributing the lost torque due to erroneous pitch position into non-faulty blade actuators. The effectiveness of the proposed method is demonstrated through simulations with a benchmark model of the wind turbine.

Fault Tolerant Control of Sensor Fault of EPB System (EPB 시스템의 센서 고장 허용 제어 기법)

  • Lee, Won-Goo;Lee, Young-Ok;Jang, Min-Seok;Lee, Choong-Woo;Chung, Chung-Choo;Chung, Han-Byul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.8-17
    • /
    • 2010
  • In this paper, a fault tolerant control against sensor faults of electric parking brake (EPB) is proposed. Fault tolerant control method of EPB system is strongly demanded since sensor faults can endanger a driver's safety. In this paper, a clamp force estimation method is presented using motor's armature current and angular velocity. Clamp force estimation method is applied for fault detection method with parity equations. The goal of the detection method is to detect and identify faults in encoder, current sensor, force sensor, and parking cable. And a switching logic for fault tolerant control against the three sensor faults is suggested. Experimental results show that the proposed force estimation method satisfies the specifications of EPB system. The effectiveness of the fault detection method is validated with experimental results. Although a single sensor fault happens, EPB system with the proposed fault detection method does not develop into a failure on subsystem or system level.

Fault Detection and Reconstruction for Descriptor Systems with Actuator and Sensor Faults

  • Yeu, Tae-Kyeong;Matsunaga, Nobutomo;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2582-2587
    • /
    • 2003
  • This paper proposes an application of sliding mode observer to the problem of fault detection and reconstruction for descriptor systems with both actuator and sensor faults. In detecting and reconstructing the faults simultaneously, first, we will consider the fault detection problem for sensor fault. The detection of sensor fault is achieved from the design of the matrix which eliminates the influence of actuator fault. Secondly, the sliding mode observer which adds the general full-order observer for descriptor system to feedforward injection map and feedforward compensation signal is designed, and through which the sensor fault is reconstructed. Finally, with the reconstructed sensor fault, and by eliminating differential term of the sensor fault, the actuator fault is detected and reconstructed.

  • PDF