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Abstract: This paper proposes an application of sliding mode observer to the problem of fault detection and re-

construction for descriptor systems with both actuator and sensor faults. In detecting and reconstructing the faults

simultaneously, first, we will consider the fault detection problem for sensor fault. The detection of sensor fault is

achieved from the design of the matrix which eliminates the influence of actuator fault. Secondly, the sliding mode

observer which adds the general full-order observer for descriptor system to feedforward injection map and feedforward

compensation signal is designed, and through which the sensor fault is reconstructed. Finally, with the reconstructed

sensor fault, and by eliminating differential term of the sensor fault, the actuator fault is detected and reconstructed.
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1. INTRODUCTION

The process of detecting and isolating system faults

has been of considerable interest during the last two

decades[1]-[3]. Research is still under way into devel-

opment of more effective solution for fault detection and

isolation(FDI) in automatic control systems. The pur-

pose of fault detection is to determine occurrence of fault

in the plant, whereas fault isolation is to determine loca-

tion of fault after its detection. The most obvious method

for automatic fault detection is the use of hardware re-

dundancy, where measurements from multiple sensors are

compared with each other and existence of fault is deter-

mined by implementing a voting mechanism. In many

cases, however, hardware redundancy may not be pos-

sible or desirable, since it imposes penalty in terms of

volume, weight and costs etc.. In other cases where fault

exists in the actuator, its direct measurement is often

not possible. In this case, indirect measurements may

be used to infer the component fault status using model

of the plant. One method to analytically detect the exis-

tence of fault is to look for anomalies in the plant’s output

relative to model-based estimate of the output. For this

FDI problem, the most effective way will be observer-

based approach in which the difference between actual

and estimated outputs is used as residual vector. That

is, function observer for fault detection is to estimate the

output of the system from the measurements, and then

to construct the residual by properly weighted output

estimate error.

In general, a popular and straightforward observer is

one by Luenberger[4]. We may select an observer gain

such that error state decays suitably fast, but in practical

problems assignment of eigenvalues of the error system

too far into the left half-plane leads to excessive noise

amplification. Whereas, sliding mode observer was pro-

posed by Utkin[5]. The fundamental difference between

sliding mode observer and others is that sliding mode

observer has discontinuous input terms such that error

trajectories move onto a specified attractive hyperplane.

Robustness, insensitivity properties, simplicity of design

and straightforward implementation are motivations to

consider sliding observers as a powerful and deserving

observer approaches. A. J. Koshkouei and A. S. I. Zi-

nober[6] proposed a new approach for designing sliding

mode observer and proof of stability of the state recon-

struction system for linear time-invariant SISO systems

using the Lyapunov method. They presented a feedfor-

ward injection map and new conditions which ensure the

stability of the error reconstruction dynamics and the

existence of the sliding mode. C. Edwards et al.[7] pro-

vided some new developments in the use of sliding mode

observer theory for decoupling the effects of fault signals

from the response of the estimated system outputs. Par-

ticularly, they have attempted to reconstruct the fault

rather than to detect the presence of fault through resid-

ual signal. However, these works have not considered for

the systems with both sensor fault and actuator faults,

since the difficulty of removing the influence of the ac-

tuator fault in detecting the sensor fault and the design

constraints.

This paper proposes an application of sliding mode ob-

server to the problem of fault detection and reconstruc-

tion for descriptor systems with both actuator and sensor

faults. In detecting and reconstructing the faults simulta-

neously, first, we will consider the problem for the sensor

fault. The detection of sensor fault is achieved from the

design of the matrix which eliminates the influence of ac-

tuator fault. Secondly, the sliding mode observer which

adds general full-order observer for the descriptor system



to feedforward injection map and feedforward compen-

sation signal is designed, and through which the sensor

fault is reconstructed. Finally, with the reconstructed

sensor fault, and by eliminating differential term of the

sensor fault, the actuator fault is detected and recon-

structed. Throughout this paper, the notation ||�|| will

be used to represent the Euclidean norm for vectors and

spectral norm for matrices and the superscript + denotes

the generalized matrix inverse.

2. PROBLEM STATEMENT

Consider the following descriptor system with actuator

and sensor faults as{
Eẋ(t) = Ax(t) + Bu(t) + ηafa(t)

y(t) = Cx(t) + ηsfs(t)
(1)

where x(t) ∈ �n, u(t) ∈ �m, fa(t) ∈ �qa , fs(t) ∈ �qs

and y(t) ∈ �p denote the state, the control input, the ac-

tuator fault, the sensor fault and the output respectively.

The matrices E, A, B, ηa, ηs and C are constant and

real-valued with appropriate dimensions. E, rank E = r,

is singular matrix and ηa and ηs are assumed to be full

column rank. Throughout this paper we assume that the

system (1) is regular, and is controllable and observable

in sense of the Rosenbrock. Also, fa(t) and fs(t) are

bounded, i.e., there exist a non-negative real number ma

and ms such that |fa(t)| ≤ ma and |fs(t)| ≤ ms respec-

tively.

Now, the problem is to determine a proper matrix in

order to detect the faults of the system (1). Further,

through the sliding mode observer with feedforward in-

jection map and compensation signal, we attempt the

reconstruction of the faults.

3. RECONSTRUCTION OF SENSOR FAULT

In this section, we consider the reconstruction of mea-

surement fault fs(t) for the system (1) as

{
Eẋs(t) = Axs(t) + Bu(t) + ηafa(t)

ys(t) = Cxs(t) + ηsfs(t)
(2)

First, to reconstruct the sensor fault without the in-

fluence of actuator fault fa(t), the actuator term needs

to be eliminated in system (2). For this, the matrix Ra

which is satisfied with Raηa = 0 may be determined as

Ra = (In − QaC)
{

I − E�ηa(CE�ηa)
+

C
}

E� (3)

where the matrices E� ∈ �n×n and C� ∈ �n×p are satis-

fied with

[
E� C�

] [
E

C

]
= In (4)

and Qa is an arbitrary matrix which makes (In − QaC)

nonsigular. As multiplying the system (2) by the matrix

Ra, the following system which actuator term is elimi-

nated is obtained{
RaEẋs(t) = RaAxs(t) + RaBu(t)

ys(t) = Cxs(t) + ηsfs(t)
(5)

where we assume conditions as follows

(i) rank

[
RaE

C

]
= n

(ii) rank

[
Ra(sE − A) 0

C ηs

]
= n + qs

When sensor fault is known, i.e., fs(t) = f̂s(t), the state

observer for the system (5) may be described as

{
żs(t) = Nszs(t) + Lsys(t) + Jsu(t) − Lsηsf̂s(t)

x̂s(t) = Vsys(t) − zs(t)
(6)

where x̂s ∈ �n and zs ∈ �n are the estimated state vec-

tor and the transformed state vector respectively. And

Ns, Ls, Js and Vs are unknown matrices of appropriate

dimensions. Then, we have the following lemma which

describes the relation between descriptor system and ob-

server.

Lemma 1

The system (6) is an state observer for the descriptor

system (5) if

Re λ(Ns) < 0 (7)

and there exist matrices Rs ∈ �n×n and Vs ∈ �n×p such

that

Ns = RsRaE + KsC (8)

Ls = Ks − NsVs (9)

Js = −RsRaB (10)

Vsηs = 0 (11)

RsRaE + VsC = In (12)

where Reλ[·] denotes the real part of eigenvalues.

(Proof)

First, the matrices Es
� ∈ �n×n, rankEs

� = n and

Cs
� ∈ �n×p, rankCs

� = p are defined as

[
Es

� Cs
�

] [
RaE

C

]
= In (13)

And the state error is defined as

es(t) = RsRaExs(t) + zs(t) (14)

Then ės(t) is governed by

ės(t) = Nses(t) + (−NsRsRaE + LsC + RsRaA)xs(t)

+ (Js + RsRaB)u(t) + Lsηsfs(t) − Lsηsf̂s(t)

− Vsηsḟs(t) (15)



which by invoking (7) - (11) reduces to

ės(t) = Nses(t) (16)

It follows from (7) that es(t) → 0 as t → ∞. Then,

limt→∞[xs(t) − x̂s(t)] = 0.

�

For the design of state observer, we will solve (8) - (12)

in the following. First, from (12),

VsC = In − RsRaE (17)

Substitution of (13) into (17) yields

VsC = Vs(Es
�)

+
(In − Es

�RaE) = In − RsRaE (18)

from which the matrix Vs is obtained as

Vs = (In − GRaE)Cs
� (19)

where

G = Rs − Vs(Cs
�)

+
Es

�

Multiplying of the matrix C into (19) yields

VsC = (In − GRaE)(In − Es
�RaE) (20)

Since rank E = r, we find

Rs = Es
� + G(In − RaEEs

�) (21)

Next, from (11) and (19), we get

Cs
�ηs = GRaECs

�ηs (22)

whose solution exists if rank RaECs
�ηs = rank ηs = qs.

Note that p ≥ r− qa > qs, i.e., the number of output and

rank E - rank ηa must be great than that of fault. The

general solution of (22) can be written as

G = Cs
�ηs(RaECs

�ηs)
+ + Qs{In − RaECs

�

ηo(RaECs
�ηs)

+} (23)

where Qs is an arbitrary matrix. By substituting G in

(23) into (19), we get

Vs = (In − QsRaE){In − Cs
�ηs(RaECs

�ηs)
+RaE}Cs

�

(24)

and can see form (24) that there exists the matrix

Qs which makes (In − QsRaE) nonsingular and the

rank Vs = p − qs. The remaining problem is to find

the matrix Ks which stabilizes the matrix Ns.

The general form of sliding mode observer for the sys-

tem (5) can be obtained as

{
żs(t) = Nszs(t) + Lsys(t) + Jsu(t) − λsvs(t)

x̂s(t) = Vsys(t) − zs(t)
(25)

where vs(t) is external feedforward compensation signal

and λs ∈ �n×p is the feedforward injection map such that

Cλs �= 0. Without loss of the generality we assume that

Cλs > 0. And we assume that (Ns, λs) is a completely

controllable.

Now, we determine the feedforward injection map and

compensation signal which guarantee the stability of the

error reconstruction dynamics and the condition of the

existence through the same method proposed by T. K.

Yeu and S. Kawaji[11]. Subtracting (25) from (5), the

error dynamics is

ės(t) = Nses(t) + Lsηsfs(t) − λsvs(t) (26)

and the output reconstruction error eys(t) is as follows

ėys(t) = CNses(t) + CLsηsfs(t) − Cλsvs(t) (27)

Hence, the equation of the ideal sliding mode are ob-

tained from conditions such as eys(t) = 0 and ėys(t) = 0.

Therefore, the equivalent feedforward signal is given by

veqs (t) =
1

Cλs
(CNses + CLsηsfs(t)) (28)

Consider the discontinuous feedforward input as

vs(t) = Wssgn(eys(t)), eys(t) �= 0 (29)

where Ws is a positive real number or diagonal matrix,

whose elements are wsj ≥ |CjLsηs|
Cjλsj

ms, j = 1, · · · , p.

Hence, Cj and λsj are the j-th column element and row

element of matrices C and λs respectively. We now es-

tablish conditions so that limt→∞ es(t) = 0.

Let Ps be the u.p.d.s. the solution of Lyapunov equa-

tion

NsPs + Ps
T Ns = −Qs (30)

where Qs is an arbitrary p.d.s. matrix. For reaching the

stability of the reconstruction error system, the feedfor-

ward injection map λ is chosen as

λs = Ps
−1CT (31)

and the following is considered

Lsηs = λsρs (32)

so that the error dynamics obtained by substituting (28)

into vs(t) in (26) be independent of the sensor fault,

where ρs is a constant matrix. A Lyapunov function

candidate for (26) is

V (es(t)) = es
T (t)Pses(t) (33)

where Ps is defined in (30). Then, V̇ (es(t)) < 0 and

consequently limt→∞ es(t) = 0.

Next, under the above conditions, from (27) we have

Cλsvs(t) = CLsηsfs(t) (34)

hence the discontinuous component in (29) is replaced by

the continuous approximation such as

vδs (t) = Ws
eys(t)

||eys(t)|| + δs
(35)



where δs is a small positive scalar. It follows from (34)

that

fs(t) ≈ (CLsηs)
+(Cλs)vδs (t) (36)

Thus, the sensor fault is reconstructed as well as is de-

tected from (36).

4. RECONSTRUCTION OF ACTUATOR

FAULT

In the section 3, the sensor fault fs(t) was already re-

constructed from the feedforward signals. Using the ob-

tained fault, in this section, the actuator fault will be

reconstructed.

Consider the following the descriptor system

{
Eẋa(t) = Axa(t) + Bu(t) + ηafa(t)

ya(t) = Cxa(t) + ηsfs(t)
(37)

To reconstruct the actuator fault, fa(t), the differential

term of sensor fault must be eliminated. This problem is

solved from the following lemma.

Lemma 2

As Lemma 1, for the system (37) the matrix Ca
� ∈

�n×p is defined as

Ca
� = (In − QE)

{
In − C�ηs(EC�ηs)

+E
}

C�

which is satisfied with the following conditions

(i)
[

Ea
� Ca

�
] [

E

C

]
= In

(ii) Ca
�ηs = 0

where Q is an arbitrary matrix. From the matrix Ca
�,

the differential term of sensor fault is eliminated.

(Proof)

The proof is omitted. �

As section 3, consider a suitable state estimation for

descriptor system (37) so that the reconstruction error

dynamics is asymptotically stable. If the state error

equation is defined as

eas(t) = E�Exa(t) + za(t) (38)

The general form of the sliding mode observer for system

(37) can be described as




ża(t) = Naza(t) + Laya(t) + Jau(t) − Laηsf̂s(t)

− E�λava(t)

x̂a(t) = C�ya(t) − za(t)

(39)

where x̂a ∈ �n and za ∈ �n are estimated state vector

and the transformed state vector respectively. And

Na = E�E + KaC, La = Ka − NaC�

Ja = −E�B

Note that the matrix Ka which stabilizes the matrix

Na is feedback control gain. Hence, va(t) is an external

feedforward compensation signal and λa ∈ �n×p is the

feedforward injection map such that Cλa �= 0.

Now, we determine the feedforward injection map and

compensation signal. Subtracting (39) from (37), the

error dynamics ėa(t) is

ėa(t) = Naea(t) + E�ηafa(t) − λava(t) (40)

and the output error dynamics, ėya(t) is as follows

ėya(t) = CNaea(t) + CE�ηafa(t) − Cλava(t) (41)

The ’virtual’ equivalent feedforward signal may be given

by

veqa =
1

Cλa
(CNaea + CE�ηafa) (42)

We desire to find λa and va(t) such that the stability

property of the system is preserved. We can interpret λa

and va(t) as the control input distribution map and the

input of the reconstruction error system, respectively.

Consider the discontinuous feedforward input as

va(t) = Wasgn(eya(t)), eya(t) �= 0 (43)

where Wa is a positive real number or diagonal matrix,

whose elements are waj ≥ |CjE�ηa|
Cjλaj

·ma. We now estab-

lish conditions so that limt→∞ ea(t) = 0.

Let Pa be the u.p.d.s. solution of Lyapunov equation

NaPa + Pa
T Na = −Qa (44)

where Qa is an arbitrary p.d.s. matrix. Choose

λa = Pa
−1CT , (45)

and suppose the following holds

E�ηa = λaρa (46)

where ρa is a constant matrix. The choice (45) and the

condition (46) are now lead to stability of the reconstruc-

tion error system. A Lyapunov function candidate for

(40) is

V (ea(t)) = ea
T (t)Paea(t) (47)

where Pa is defined in (44). Then, V̇ (t) < 0 and conse-

quently limt→∞ ea(t) = 0. Under the above conditions,

from (41) we have

Cλava(t) = CE�ηafa(t) (48)

Here, an alternative approach[7] will be employed, then

the discontinuous component in (43) is replaced by the

continuous approximation such as

vδa(t) = Wa
eya(t)

||eya(t)|| + δa
(49)

where δa is a small positive scalar. It can be shown that

the equivalent output injection can be approximated to

any degree of accuracy by (49) for a small enough choice

of δa. It follows from (48) that

fa(t) ≈ (CE�ηa)+(Cλa)vδa(t) (50)

From (50), the actuator fault, fa(t) is reconstructed.



5. SIMULATION RESULTS

Consider a descriptor system with both measurement

fault and input fault such as

E =




1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0


 , ηa =




0.0

1.0

1.0

0.0


 ,

A =




−2.2 0.0 0.0 0.0

0.0 −1.6 0.2 0.0

0.0 0.9 −1.4 0.0

0.0 0.0 0.0 −1.7


 ,

C =


 1.0 0.0 0.0 1.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0


 ,

B =




0.0

1.0

0.0

1.0


 , ηs =


 1.0

1.0

0.0




Case 1 : FDI problem of sensor fault

Step 1 : The matrices E� and C� are defined as follows

E� =




1.0 0.0 0.0 0.0

−0.5 0.5 0.5 −0.5

0.5 −0.5 0.5 0.5

−0.5 0.5 −0.5 0.5




C� =




0.0 0.0 0.0

0.5 0.5 −0.5

−0.5 0.5 0.5

0.5 −0.5 0.5




Step 2 : The matrix Ra is obtained from (3)

Ra =




1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.5 −0.5 0.5 0.5

−0.5 0.5 −0.5 0.5




Step 3 : The matrices Es
� and Cs

� are defined as follows

Es
� =




0.71 0.00 0.00 −0.00

−0.00 0.41 0.41 −0.41

0.41 0.33 −1.08 −0.33

0.58 0.47 −0.53 0.53




Cs
� =




0.00 0.00 −0.00

0.41 0.41 −0.41

0.33 −1.08 −0.33

0.47 −0.53 0.53




Step 4 : From (24), the matrix Vs is calculated as

Vs =




−0.00 0.00 0.00

−0.00 0.00 0.00

0.71 −0.71 −0.71

0.50 −0.50 0.50




Step 5 : The matrix λs is obtained from (31)

λs =




4.7784 −0.1444 −0.5069

−0.4310 5.6820 −0.2294

−0.9985 0.0573 4.7343

6.4397 −0.2867 5.9482




Case 2 : FDI problem of actuator fault

Step 1 : The matrices Ea
� and Ea

� which are satisfied

with Lemma 2 are calculated as

Ea
� =




1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

−0.5 0.5 −0.5 1.5




Ca
� =




0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.5 −0.5 0.5




Step 2 : The matrix λa is obtained from (45)

λa =




11.4873 1.2881 −2.7568

1.4492 13.1728 −2.5820

0.0134 −2.7431 22.0199

13.5603 0.1611 16.3306




Based on the above matrices, the simulation was done

for the numerical descriptor system with faults as Fig. 1.

Here, we assume that the actuator has input trouble of

sine curve and the sensor possesses bias problem.

Fig. 2 and 3 show the reconstructed sensor fault(solid

line) and reconstructed actuator fault(solid line) respec-

tively. From the simulation results of Fig. 2 and 3, we

can see that the reconstructed faults almost correspond

with the faults of Fig. 1.

6. CONCLUSIONS

This paper proposed the application of sliding mode

observer to the problem of fault detection and recon-

struction for descriptor systems with both actuator and

sensor faults. In detecting and reconstructing the faults

simultaneously, first, we considered for sensor fault. The

detection of the sensor fault was achieved from the design

of the matrix which eliminates the influence of actuator

fault. Secondly, for the system excepted the actuator

fault, the sliding mode observer which adds the general

full-order observer to the feedforward injection map and

the feedforward compensation signal was designed. The

reconstruction of sensor fault was achieved from the feed-

forward signals and the output error between the system

and the sliding mode observer.

The detection and reconstruction of actuator fault were

achieved with the reconstructed sensor fault and by elim-

inating the differential term of sensor fault. Finally,

from the numerical simulation, we proved that the recon-

structed faults almost correspond with the real faults.
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Fig. 1. The actuator fault and sensor fault
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Fig. 2. The result of the reconstructed sensor fault
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Fig. 3. The result of the reconstructed actuator fault
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